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FOREWORD

Mathematics HL (Option): Sets, Relations and Groups has been written as a companion book to
the Mathematics HL (Core) textbook. Together, they aim to provide students and teachers with
appropriate coverage of the two-year Mathematics HL Course, to be first examined in 2014.

This book covers all sub-topics set out in Mathematics HL Option Topic 8 and Further Mathematics
HL Topic 4, Sets, Relations and Groups.

The aim of this topic is to introduce students to the basic concepts, techniques and main results in
abstract algebra, specifically for sets, relations and group theory.

Detailed explanations and key facts are highlighted throughout the text. Each sub-topic contains
numerous Worked Examples, highlighting each step necessary to reach the answer for that example.

Theory of Knowledge is a core requirement in the International Baccalaureate Diploma Programme,
whereby students are encouraged to think critically and challenge the assumptions of knowledge.
Discussion topics for Theory of Knowledge have been included on pages 114 and 124. These aim to
help students discover and express their views on knowledge issues.

The accompanying student CD includes a PDF of the full text and access to specially designed
software.

Graphics calculator instructions for Casio fx-9860G Plus, Casio fx-CG20, TI-84 Plus and TI- spire
are available from icons located throughout the book.

Fully worked solutions are provided at the back of the text, however students are encouraged to
attempt each question before referring to the solution.

It is not our intention to define the course. Teachers are encouraged to use other resources. We have
developed this book independently of the International Baccalaureate Organization (IBO) in
consultation with experienced teachers of IB Mathematics. The Text is not endorsed by the IBO.

In this changing world of mathematics education, we believe that the contextual approach shown in
this book, with associated use of technology, will enhance the students understanding, knowledge
and appreciation of mathematics and its universal applications.

n

We welcome your feedback.

Email:

Web:

info@haesemathematics.com.au

www.haesemathematics.com.au

CTQ CS

RCH PMH
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USING THE INTERACTIVE STUDENT CD

The interactive CD is ideal for independent study.

Students can revisit concepts taught in class and undertake their own revision
and practice. The CD also has the text of the book, allowing students to leave
the textbook at school and keep the CD at home.

By clicking on the relevant icon, a range of interactive features can be
accessed:

�

�

Graphics calculator instructions for the ,
, and the

Interactive links to software

Casio fx-9860G Plus
Casio fx-CG20 TI-84 Plus TI- spiren
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SYMBOLS AND NOTATION USED IN THIS BOOK

6

¼ is approximately equal to

> is greater than

> is greater than or equal to

< is less than

6 is less than or equal to

f......g the set of all elements ......

fx1, x2, ....g the set with elements x1, x2, ....

fx j g the set of all x such that

n(A) the number of elements in the finite set A

A0 the complement of the set A

2 is an element of

=2 is not an element of

? the empty (null) set

N the set of all natural numbers f0, 1, 2, 3, ....g
Z the set of integers f0, §1, §2, §3, ....g
Z + the set of positive integers f1, 2, 3, ....g
Q the set of rational numbers

Q + the set of positive rational numbers fx j x 2 Q , x > 0g
Q 0 the set of irrational numbers

R the set of real numbers

R + the set of positive real numbers fx j x 2 R , x > 0g
C the set of complex numbers fa + ib j a, b 2 R g
U the universal set

[ union

\ intersection

AnB the difference of the sets A and B, AnB = fx j x 2 A and x =2 Bg
A¢B the symmetric difference of the sets A and B, A¢B = (AnB) [ (BnA)

A £ B The Cartesian product of sets A and B, A £ B = f(a, b) j a 2 A, b 2 Bg
Z p the set of equivalence classes f0, 1, 2, ...., p ¡ 1g of integers modulo p

µ is a subset of

½ is a proper subset of

P (A) the power set of the set A

) implies that

)Á does not imply that

, if and only if

IB HL OPT 2ed
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7

xRy x is related to y

f : A ! B f is a function under which each element of set A has an image in set B

f : x 7! y f is a function under which x is mapped to y

f(x) the image of x under the function f

f¡1 the inverse function of the function f

f ± g or f(g(x)) the composite function of f and g

jxj the modulus or absolute value of x

[ a , b ] the closed interval a 6 x 6 b

] a, b [ the open interval a < x < b

nP
i=1

ui u1 + u2 + u3 + :::: + un

nQ
i=1

ui u1 £ u2 £ u3 £ :::: £ un

maxfa, bg the maximum value of a or b

a j b a divides b

gcd(a, b) the greatest common divisor of a and b

lcm(a, b) the lowest common multiple of a and b

a ´ b(modn) a is congruent to b modulo n

dy

dx
the derivative of y with respect to x

f 0(x) the derivative of f(x) with respect to x

d2y

dx2
the second derivative of y with respect to x

f 00(x) the second derivative of f(x) with respect to x

dny

dxn
the nth derivative of y with respect to x

f (n)(x) the nth derivative of f(x) with respect to xR
y dx the indefinite integral of y with respect to x

lnx the natural logarithm of x

sin, cos, tan the circular functions

csc, sec, cot the reciprocal circular functions

arcsin, arccos, arctan the inverse circular functions

cis µ cos µ + i sin µ

n! n £ (n ¡ 1) £ (n ¡ 2) £ :::: £ 3 £ 2 £ 1¡
n
r

¢ n!

r!(n ¡ r)!

IB HL OPT 2ed
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8

fG, ¤g the group with non-empty set G and binary operation ¤
a¡1 the inverse of the group element a 2 G

e the identity element of a group

jGj the order of the group G

jgj the order of the group element g 2 G

(a1a2::::ar) the permutation which maps a1 to a2, a2 to a3, ...., ar to a1

Sn the set of all permutations of 1, 2, 3, ...., n

Dn the dihedral group of degree n

H < G H is a subgroup of G

hgi the cyclic group with generator g

G »= H G is isomorphic to H

gH fg ¤ h j h 2 Hg

IB HL OPT 2ed
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SETS, RELATIONS, AND GROUPS 9

Many ideas relating to set theory were an essential part of the growth of mathematics. However, it was

not until Georg Cantor (1845 - 1918) that the study of sets was developed as a formal theory.

A set S is a collection of objects, called the elements or members of the set.

If x is an element of S, we write x 2 S. If x is not an element of S, we write x =2 S.

A set must be well-defined, which means that if x is some element or object, then either x 2 S or

x =2 S, and the definition of S will determine which of these two possibilities holds.

For example, if S is the collection of vowels in the English alphabet, then we write S = fa, e, i, o, ug.

There is no ambiguity about what determines membership of S, so S is well-defined and hence S is a

set. We see that a 2 S but d =2 S.

By contrast, consider a collection of the 10 best actors in the world. This collection is not well-defined

as ‘best’ is too subjective and does not clearly define membership. This collection is therefore not a set.

A set is called a finite set if it contains a finite number of elements.

A set is called an infinite set if it contains an infinite number of elements.

The number of distinct elements in a set S is denoted n(S) or jSj. For finite sets, Cantor called n(S)

the cardinality or cardinal number of the set S.

For example, S = fa, e, i, o, ug has cardinality n(S) = 5.

For infinite sets, the definition of cardinality is more complex, and is not discussed here.

Where n(S) is small, it is usually easy to list all the elements in the set individually. For larger sets, we

do not wish to list every element, so we instead use the ‘set-builder’ notation fx j x has some specified

propertyg. This notation is read as ‘the set containing all elements x, such that x has that property’.

For example, fx j x is an IB student enrolled in Mathematics HLg describes all IB students studying

HL mathematics.

NUMBER SETS

You should already be familiar with the following infinite sets of numbers:

² N is the set of natural numbers f0, 1, 2, ....g (Note that 0 is omitted in some other texts.)

² Z is the set of integers f0, §1, §2, ....g
² Q is the set of rational numbers fx j x =

p

q
, p, q 2 Z , q 6= 0g

² Q 0 is the set of irrational numbers, which are numbers that are real but not rational

² R is the set of real numbers

² C is the set of complex numbers fz j z = a + ib, a, b 2 R g
² Z +, Q +, and R + denote the positive elements of Z , Q , and R respectively.

For example, Z + = f1, 2, 3, ....g.

Note that the set of real numbers is difficult to describe, but is considered to be well-defined nevertheless.

We know a number is real if it can be located on a number line.

SETSA

IB HL OPT
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10 SETS, RELATIONS, AND GROUPS

State whether each of the following is true:

a 3 =2 Q b
p

9 2 Z c ¼ 2 Q

d ¡6:9 2 Z e 3:213 2 Q f
p¡11 2 R

a False, as 3 can be written as 3
1 and is therefore a rational number. We write 3 2 Q .

b True, as
p

9 = 3, and 3 2 Z .

c False, as ¼ is an irrational number. We write ¼ =2 Q .

d False, as ¡6:9 = ¡6 9
10 , which is not an integer. We write ¡6:9 =2 Z .

e True, as 3:213 = 3213
999 = 3 71

333 = 1070
333 which is rational. We write 3:213 2 Q .

f False, as
p¡11 is an imaginary number.

p¡11 2 C but
p¡11 =2 R .

EQUALITY OF SETS

Two sets are equal if and only if they contain the same elements. The order in which elements in a set

are listed is not important.

For example, for number sets, the set fa, b, cg is the same set as fb, c, ag. The set fa, b, b, cg is

also equal to the previous two because repetitions of numerical elements are ignored.

State whether the following pairs of sets are equal:

a f3, 5, 7g, f5, 7, 3g b f2, 2, 3, 5g, f2, 3, 5g
c fvowels in the English alphabetg, fa, e, i, o, ug
d fprime numbers between 24 and 28 inclusiveg, fprime numbers between 32 and 36 inclusiveg
e fintegers between ¡3 and 7 inclusiveg, fnatural numbers between ¡3 and 7 inclusiveg

a The order of the elements in a set does not matter, so the sets are equal.

b Repetitions can be ignored, so the sets are equal.

c Both sets describe the same letters, so they are equal.

d Both sets are empty, so they are equal.

e The first set is f¡3, ¡2, ¡1, 0, 1, 2, 3, 4, 5, 6, 7g while the second is f0, 1, 2, 3, 4, 5, 6, 7g.

We see, for example, that ¡1 belongs to the first set but not the second set

) the sets are not equal.

When it is not feasible to list the elements of each set, we need an alternative method for determining

whether or not two sets are equal. This will be discussed later.

THE EMPTY SET AND THE UNIVERSAL SET

There is exactly one set with no elements. It is called the empty set or null set, and is denoted ?.

In any particular situation, the set containing all elements under consideration is called the universal set,

U . In statistics this is the population, and in probability it is the sample space.

Example 2

Example 1
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SETS, RELATIONS, AND GROUPS 11

EXERCISE A.1

1 List the elements of each set and state the number of elements in the set:

a fa, b, cg b fx j x is a prime number less than teng
c fx j x 2 Z , x 2 [3, 8[ g d fx j x 2 R , x2 = ¡9g
e f3, 4, 3, 4g f f?g

2 State whether the following sets are finite or infinite. If the set is finite, write down its cardinality.

a fx j x 2 Z , 0 < x < 100g b fx j x 2 Q , 0 < x < 100g
3 State whether each of the following is true:

a 7 2 Z b
p

13 2 Q c e 2 R d ¡3:5 2 Q

e 4:1 2 Z + f
p¡2 2 C g (

p
3)2 2 Z h ¼2 2 R

4 Which of the following pairs of sets are equal?

a f1, 2, 3, 3g and f1, 2, 3g b f1, m, ng and fm, 1, ng
c fx j x 2 Z , x2 = 4g and fx j x 2 R , jxj = 2g
d fprime numbers of the form 2n, n 2 N , n > 1g and fnegative numbers > 3g
e fx j x 2 R , x 2 ]2, 5[ g and fx j x 2 R , x 2 [2, 5]g

SUBSETS

If every element of set B is also an element of set A, then B is a subset of A.

In this case, for all x 2 B, x 2 A, and we write B µ A.

We note that for any set A, A µ U .

The empty set ? is a subset of every set, and every set is a subset of itself.

So, for any set A, ? µ A and A µ A.

The subsets ? and A of set A are called the trivial subsets of A.

If a subset B of A is such that B 6= A and B 6= ?, then B is called a proper subset of A.

We write B ½ A.

The subsets of the set fa, bg are ?, fag, fbg, and fa, bg.

Venn diagrams can be used to illustrate sets. The interior of

a rectangle indicates the universal set U , and the interiors of

circles are used for other sets. In illustrations of large numbers

of sets, other closed figures may be used.

The Venn diagram alongside illustrates B µ A.

The set of subsets of a set A is called the power set, P (A), of A.

The number of subsets of a set with m elements is 2m. So, if n(A) = m, then n(P (A)) = 2m.

U

A

B

IB HL OPT
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12 SETS, RELATIONS, AND GROUPS

Proof:

For every subset of A, there are two possibilities for each element x 2 A: either x will be in the

subset, or it will not.

) for all m elements there will be 2m different choices in making a subset of A

) the number of subsets of A is 2m.

Find P (A) if A = fp, q, rg.

Since n(A) = 3, there will be 23 = 8 elements in P (A).

P (A) = f?, fpg, fqg, frg, fp, qg, fp, rg, fq, rg, fp, q, rgg

Two sets A and B are equal if A µ B and B µ A.

This result provides us with the method to prove two sets A and B are equal, particularly when A and

B are abstract sets for which it is not feasible to list their elements.

To prove two sets A and B are equal, we need to show that x 2 A , x 2 B.

For proofs involving an equivalence statement “if and only if” or

iff or ,, we need to perform the proof both ways.

So, if we are to prove that statement S1 is true if and only if statement

S2 is true, then we have to do this both ways:

( ) ) start by assuming statement S1 and prove that statement S2

is true, and

( ( ) assume statement S2 and prove that statement S1 is true.

To show two sets A and B are equal, we need to show both:

( ) ) For all x 2 A, if x 2 A then x 2 B. This establishes that A µ B.

( ( ) For all y 2 B, if y 2 B then y 2 A. This establishes that B µ A.

Then, since A µ B and B µ A, it follows that A = B.

EXERCISE A.2

1 Find the power set P (A) for each of the following sets:

a fp, qg b f1, 2, 3g c f0g
2 For each of the following sets, state whether A µ B is true or false:

a A = fvowels in the English alphabetg, B = fletters in the word ‘sequoia’g
b A = f0g, B = ?

c A = f3, 5, 9g, B = fprime numbersg
d A = fx j x = a + b

p
2, a, b 2 Z g, B = firrational numbersg

Example 3

For more information on

proofs, consult the .Appendix
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SETS, RELATIONS, AND GROUPS 13

3 Prove that A = B:

a A = fx j x = a + 1
2 , a 2 Z g, B = fx j x = b ¡ 1

2 , b 2 Z g
b A = fx j x =

p
y, y 2 R +g, B = R +

4 Prove that A µ B but A 6= B:

a A = fy j y = (x + 1)2, x 2 Z , x is eveng, B = fodd integersg
b A = fx j x = yy¤, y 2 C g, B = R

5 Prove using mathematical induction that n(P (A)) = 2n(A).

ALGEBRA OF SETS

INTERSECTION

The set consisting of the elements common to both set A
and set B is called the intersection of A and B, written

A \ B.

A \ B = fx j x 2 A and x 2 Bg

In the Venn diagram, the shaded region is A \ B.

Find A \ B if:

a A = f1, 2, 3, 4, 5, 6g and B = f3, 5, 7, 9g
b A = f1, 2, 3, 4, 5, 6g and B = f0, 7, 9g

a A \ B = f3, 5g b A \ B = ?

UNION

The set consisting of all the elements that are found in A or B (or both)

is called the union of A and B, written A [ B.

A [ B = fx j x 2 A or x 2 Bg

In the Venn diagram, the shaded region is A [ B.

Example 4

y y* is the complex conjugate of .

U

A B

In logic and mathematics, unless

otherwise specified, the word “or”

includes the “both” case.

U

A B
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14 SETS, RELATIONS, AND GROUPS

Find A [ B if:

a A = fa, b, c, d, eg, B = fa, e, i, o, ug b A = ?, B = f1, 2, 3g
c A = feven integersg, B = fodd integersg d A = fprime integersg, B = N

a A [ B = fa, b, c, d, e, i, o, ug b A [ B = f1, 2, 3g = B

c A [ B = Z d A [ B = N

LAWS OF INTERSECTION AND UNION

² A \ B µ A [ B

² If A [ B = A \ B, then A = B

² A [ B = A if and only if B µ A

² A \ B = A if and only if A µ B

² A \ A = A (Idempotent Law)

² A [ A = A (Idempotent Law)

² A \ ? = ? (Identity Law)

² A [ ? = A (Identity Law)

² A [ U = U (Identity Law)

² A \ U = A (Identity Law)

Prove that A [ B = A if and only if B µ A.

( ) ) Suppose A [ B = A.

If B = ? then we know B µ A.

If B 6= ?, then let x 2 B

) x 2 A [ B

) x 2 A since A [ B = A.

So, if x 2 B then x 2 A. ) B µ A.

( ( ) Now suppose B µ A.

If B = ? then B [ A = ? [ A = A.

If B 6= ? then if x 2 B, x 2 A. ) fxg [ A = A.

But this is true for all x 2 B, so B [ A = A [ B = A.

Therefore A [ B = A if and only if B µ A.

DISJOINT SETS

If A\B = ?, we say that A and B are

disjoint. A and B contain no common

elements.

If A \ B = ? and A [ B = U we say

that A and B partition U .

Example 6

Example 5

U

A B
A

BU
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(a) (b) (c)

(d)

SETS, RELATIONS, AND GROUPS 15

COMPLEMENT

The complement of A, written A0, contains all elements of U which are not in A.

A0 is sometimes called the absolute complement.

The shaded region in the diagram represents A0.

Notice that A \ A0 = ? and A [ A0 = U ,

so A and A0 partition U :

EXERCISE A.3

1 A = f1, 3, 5, 7g, B = f0, 1, 2, 3, 4g, C = f6, 7, 8g, U = fn j n 6 9,

Find each of the following:

a A [ B b A \ C c B \ C d A \ (B [ C)

e (A \ B) [ (A \ C) f B0 g (A [ B)0 h A0 \ B0

2 Assuming A and B are non-empty sets, draw separate Venn diagrams to illustrate the following

cases:

a A \ B = ? b A [ B = A c A \ B0 = A d A [ B = ?

e A \ B0 = ? f A [ B = A \ B g A [ B = A \ B0

3 Consider the Venn diagram shown.

Show that if A and B are non-empty sets, then

A [ B 6= A0 \ B.

4 Prove that A \ B = A if and only if A µ B.

5 Prove that if A and B are disjoint and A [ B = U , then B = A0.

6 a Prove that n(A [ B) = n(A) + n(B) ¡ n(A \ B)

b In a class of 30 students, 16 play tennis and 15 play basketball. 6 students play neither of these

games. How many students play both tennis and basketball?

7 Prove the transitive property of set inclusion: If A µ B and B µ C, then A µ C.

ASSOCIATIVE AND DISTRIBUTIVE PROPERTIES

Both union of sets and intersection of sets are associative operations:

(A [ B) [ C = A [ (B [ C) and (A \ B) \ C = A \ (B \ C)

The union of sets is also distributive over intersection, and intersection is distributive over union:

A [ (B \ C) = (A [ B) \ (A [ C) and A \ (B [ C) = (A \ B) [ (A \ C)

These laws can be easily illustrated using Venn diagrams. A formal proof for the first of the distributive

laws is given in the following Example.

n 2 N g
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16 SETS, RELATIONS, AND GROUPS

For all sets A and B, prove that A [ (B \ C) = (A [ B) \ (A [ C).

( ) ) Let x 2 A [ (B \ C).

) x 2 A or x 2 B \ C

If x 2 A, then x 2 A [ B and x 2 A [ C

) x 2 (A [ B) \ (A [ C)

If x 2 B \ C, then x 2 B and x 2 C

) x 2 A [ B and x 2 A [ C

) x 2 (A [ B) \ (A [ C)

This establishes that A [ (B \ C) µ (A [ B) \ (A [ C) .... (1)

( ( ) Now let x 2 (A [ B) \ (A [ C).

) x 2 A [ B and x 2 A [ C

If x 2 A, then x 2 A [ (B \ C)

If x =2 A, then x 2 B and x 2 C

) x 2 B \ C

) x 2 A [ (B \ C)

This establishes that (A [ B) \ (A [ C) µ A [ (B \ C) .... (2)

Together, (1) and (2) give: A [ (B \ C) = (A [ B) \ (A [ C)

DE MORGAN’S LAWS

Two important laws in set algebra are known as De Morgan’s Laws. These are:

(A [ B)0 = A0 \ B0 and (A \ B)0 = A0 [ B0

Prove that (A [ B)0 = A0 \ B0

( ) ) If x 2 (A [ B)0, then x =2 (A [ B)

) x =2 A and x =2 B

) x 2 A0 and x 2 B0

) x 2 A0 \ B0

This establishes that (A [ B)0 µ A0 \ B0 .... (1)

( ( ) If x 2 A0 \ B0, then x 2 A0 and x 2 B0

) x =2 A and x =2 B

) x =2 (A [ B)

) x 2 (A [ B)0

This establishes that A0 \ B0 µ (A [ B)0 .... (2)

Together, (1) and (2) give: (A [ B)0 = A0 \ B0

Example 8

Example 7

De Morgan’s Laws can also be

illustrated using Venn diagrams.
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U

A B

SETS, RELATIONS, AND GROUPS 17

A summary of the laws of the algebra of sets is given below:

Idempotent Laws A [ A = A A \ A = A

Associative Laws (A [ B) [ C = A [ (B [ C) (A \ B) \ C = A \ (B \ C)

Commutative Laws A [ B = B [ A A \ B = B \ A

Distributive Laws A [ (B \ C) = (A [ B) \ (A [ C) A \ (B [ C) = (A \ B) [ (A \ C)

Identity Laws A [ ? = A, A [ U = U A \ U = A, A \ ? = ?

Complement Laws A [ A0 = U , (A0)0 = A A \ A0 = ?, U 0 = ?, ?0 = U

De Morgan’s Laws (A [ B)0 = A0 \ B0 (A \ B)0 = A0 [ B0

EXERCISE A.4

1 Suppose P = fo, n, u, ag, M = fc, n, a, eg, and the universal set is U = fletters in the

word “conjugate”g. Find:

a P [ M b P \ M c P 0

d P 0 [ M 0 e (P \ M)0 f P \ (M [ P )

2 For the Venn diagram shown, shade the region

corresponding to:

a A [ B0 b A0 \ B c (A [ B)0

d (A \ B)0 e (A0 \ B0)0

3 For all sets A and B, prove that:

a (A [ B) [ C = A [ (B [ C) b A \ (B [ C) = (A \ B) [ (A \ C)

c (A [ B) \ (A0 [ B) = B d (A \ B)0 = A0 [ B0

DIFFERENCE

The difference between two sets A and B, sometimes

called the relative complement, is defined to be

AnB = fx j x 2 A and x =2 Bg.

AnB consists of all those elements which are found in A

but not in B, so

AnB = A \ B0

Set difference is not a commutative operation, which means

that in general, AnB 6= BnA.

U

A B
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18 SETS, RELATIONS, AND GROUPS

For each pair of sets A and B, find: i AnB ii BnA
a A = f1, 2, 3g, B = f4, 5g
b A = fa, b, c, dg, B = fb, d, e, fg
c A = f1, 2, 3, 4, 5g, B = f2, 4g

a i AnB = f1, 2, 3g = A ii BnA = f4, 5g = B

b i AnB = fa, cg ii BnA = fe, fg
c i AnB = f1, 3, 5g ii BnA = ?

SYMMETRIC DIFFERENCE

The symmetric difference between two sets A and B
is defined by

A¢B = (AnB) [ (BnA).

The symmetric difference of sets A and B is the set made

up of all the elements which are in A or B but not both.

The symmetric difference has the following properties:

² A¢B = B¢A Commutative property

² A¢(B¢C) = (A¢B)¢C Associative property

² A¢? = A

² A¢A = ?

² A¢A0 = U

Find A¢B for:

a A = f1, 2, 3g, B = f4, 5g
b A = fa, b, c, dg, B = fb, d, e, fg
c A = f1, 2, 3, 4, 5g, B = f2, 4g

a A¢B = f1, 2, 3, 4, 5g b A¢B = fa, c, e, fg
c A¢B = f1, 3, 5g

EXERCISE A.5

1 For each pair of sets S and T , find: i SnT ii TnS
a S = f1, 2, 3, 4g, T = f1, 3g b S = R , T = Q

c S = f0, 1, 2, 3g, T = f2, 3, 4, 5g d S = f2, 3, 4g, T = f0, 1, 5g

Example 10

Example 9

U

A B

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_02\018IB_HL_OPT-SRG_02.cdr Tuesday, 25 June 2013 11:33:05 AM BRIAN



SETS, RELATIONS, AND GROUPS 19

2 Find A¢B for:

a A = fa, b, c, d, eg, B = fa, eg b A = f1, 2, 3, 4g, B = f3, 4, 5g
c A = f2, 4, 6g, B = f1, 3, 5g d A = f9, 11, 13g, B = ?

3 For each of the Venn diagrams below, shade the region corresponding to:

i A [ B ii A \ B iii AnB iv A¢B

a b c

4 For the Venn diagram shown, shade the region corresponding to:

a B [ A0 b (A [ B) n (A \ B)

c A \ (B [ A0) d A0¢B0

5 Prove that A¢B = A [ B if and only if A \ B = ?.

6 For all sets A, B, and C, prove that A \ (BnC) = (A \ B) n (A \ C).

7 For all sets A and B, prove that A¢B = A0¢B0.

A B

U
A B

U
A

B

U

A B

U
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20 SETS, RELATIONS, AND GROUPS

We are familiar with the concept of an ordered pair from locating points in the Cartesian plane. However,

an ordered pair need not have numbers as elements.

An ordered pair (a, b) is defined to contain two components or coordinates: a first component a,

and a second component b.

Two ordered pairs are equal if and only if their corresponding components are equal.

(a, b) = (c, d) if and only if a = c and b = d.

Thus (a, b) = (b, a) if and only if a = b.

CARTESIAN PRODUCT

Given two sets A and B, the set which contains all the ordered pairs (a, b) such that a 2 A and

b 2 B is called the Cartesian product of A and B, written A £ B.

A £ B = f(a, b) j a 2 A, b 2 Bg

For example, f1, 2, 3g £ f5, 6g = f(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6)g.

The Cartesian plane is R £ R , sometimes written R 2.

In general, A £ B 6= B £ A. The exceptions are when A = B, or when either A or B is the empty

set, in which case A £ B and B £ A both equal the empty set.

The number of elements in A£B is found by multiplying the number of elements in each of A and B:

n(A £ B) = n(A) £ n(B)

Prove that the Cartesian product is distributive over set intersection:

A £ (B \ C) = (A £ B) \ (A £ C)

( ) ) Let (x, y) 2 A £ (B \ C)

) x 2 A and y 2 B \ C

) x 2 A, y 2 B, and y 2 C

) (x, y) 2 A £ B and (x, y) 2 A £ C

) (x, y) 2 (A £ B) \ (A £ C)

) A £ (B \ C) µ (A £ B) \ (A £ C) .... (1)

( ( ) Let (x, y) 2 (A £ B) \ (A £ C)

) (x, y) 2 A £ B and (x, y) 2 A £ C

) x 2 A, y 2 B, and y 2 C

) x 2 A and y 2 B \ C

) (x, y) 2 A £ (B \ C)

) (A £ B) \ (A £ C) µ A £ (B \ C) .... (2)

From (1) and (2), A £ (B \ C) = (A £ B) \ (A £ C)

ORDERED PAIRSB

Example 11
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SETS, RELATIONS, AND GROUPS 21

EXERCISE B.1

1 For each pair of sets A and B, find: i A £ B ii B £ A

a A = f1, 2g and B = f3, 4, 5g b A = fag and B = fa, bg
c A = f1, 2, 3g and B = ?

2 For each pair of sets A and B, graph A £ B on the Cartesian plane.

a A = f¡2, 0, 2g, B = f¡1, 0, 1g
b A = fx j 2 6 x < 5, x 2 R g, B = fx j ¡1 6 x < 4, x 2 R g

3 Prove that the Cartesian product is distributive over set union: A£ (B[C) = (A£B)[ (A£C).

RELATIONS

A relation is any set of ordered pairs.

Any subset of the Cartesian product of two sets A and B is a relation.

If R is a relation and (x, y) 2 R, then we sometimes write xRy.

If R µ A £ B, then R is said to be “a relation from A to B”.

If R = X £ Y , then X is called the domain of R and Y is called the range of R.

The domain consists of all possible first components of the ordered pairs of the relation.

The range contains all possible second components of the ordered pairs of the relation.

If R is a relation from A to B then the domain of R is a subset of A, and the range of R is a subset of B.

If R µ A £ A, we say that R is “a relation in A”.

The following are examples of relations:

R = f(1, 3), (2, 4), (3, 1), (3, 4)g is a relation in N or Z +

R = f(1, 2:5), (2, 3:7), (4, 2), (3, 7:3)g is a relation from N to Q

R = f(x, y) j x2 + y2 = 9, x, y 2 R g is a relation in R

R = f(x, (y, z)) j y2 + z2 = x2, x, y, z 2 R g is a relation from R to R 2.

REFLEXIVE RELATIONS

A relation R in a set S is said to be reflexive if, for all a 2 S, aRa.

R is a reflexive relation on the set f1, 2, 3, 4g if and only if f(1, 1), (2, 2), (3, 3), (4, 4)g µ R

xRy x yreads ‘ is related to ’.
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22 SETS, RELATIONS, AND GROUPS

Which of the following relations are reflexive?

a The relation R in a set of school students, where xRy if and only if x and y attend the same

school.

b The relation in children in a family, “is the brother of”.

c The relation R in Z , where xRy if and only if x 6 y.

d The relation R in f1, 2, 3g, where R = f(1, 1), (1, 2), (3, 2), (3, 3)g.

e The relation R in R , where xRy if and only if x = y.

a The relation is reflexive since a student always goes to the same school as him or herself.

b The relation is not reflexive since you are not your own brother, especially if you are a girl.

c The relation is reflexive since x 6 x for all x 2 Z .

d The relation is not reflexive since (2, 2) =2 R.

e The relation is reflexive by definition.

SYMMETRIC RELATIONS

A relation R in a set S is said to be symmetric if, for all a, b 2 S, aRb implies bRa.

So, a relation R is symmetric if, whenever (a, b) 2 R, then also (b, a) 2 R.

Which of the following are symmetric relations?

a The relation R in f1, 2, 3, 4g, where R = f(1, 2), (2, 1), (3, 3), (4, 2), (2, 4)g
b The relation in a set of people, “is the sibling of”.

c The relation in a set of people, “is the brother of”.

d The relation in Z , where xRy if and only if x 6 y.

e The relation in R , where xRy if and only if x = y.

a The relation is symmetric.

b The relation is symmetric. In a set of people, not every person will have a sibling. All that is

required here is that if a is the brother or sister of b, then b will be the brother or sister of a.

c The relation is not symmetric. For example, Paul may be the brother of Anne, but Anne is

not the brother of Paul.

d The relation is not symmetric. For example, 3 6 7 and so (3, 7) 2 R, but 7 3 and so

(7, 3) =2 R.

e The relation is symmetric.

Note that when a relation is not symmetric, we describe it as non-symmetric or just not symmetric. The

term anti-symmetric is reserved for a special case of non-symmetric relations.

A relation R is anti-symmetric if, for all xRy, it is never true that yRx unless x = y.

Example 13

Example 12

Ê
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SETS, RELATIONS, AND GROUPS 23

For example: f(1, 2), (2, 1), (3, 2), (2, 3)g is symmetric.

f(1, 2), (2, 1), (3, 2)g is non-symmetric but not anti-symmetric.

f(1, 2), (2, 3), (3, 3)g is non-symmetric and anti-symmetric.

TRANSITIVE RELATIONS

A relation R in a set S is said to be transitive if, for all a, b, c 2 S, aRc whenever aRb and bRc.

In a transitive relation R, if (a, b) and (b, c) are both elements of R, then so must (a, c). Establishing

this can often be a time consuming process. It may be useful to make a list of all possibilities and check

each one.

Which of the following relations are transitive?

a The relation R in f1, 2, 3, 4g, where R = f(1, 1), (1, 2), (2, 3), (1, 3)g.

b The relation in a set of buildings, “is older than”.

c The relation in a set of people, “is the father of”.

d The relation R in Z , where xRy if and only if x 6 y.

e The relation in R , where xRy if and only if x = y.

a The relation is transitive. For example, since (1, 2) 2 R and (2, 3) 2 R, (1, 3) must be

in R, which is true.

b The relation is transitive. If building a is older than building b, and building b is older than

building c, then building a is older than building c.

c The relation is not transitive. If a fathers b and b fathers c, then a is the grandfather of c, not

the father.

d The relation is transitive. If a 6 b and b 6 c, then a 6 c.

e The relation is transitive. If a = b and b = c, then a = c.

EXERCISE B.2

1 State the domain and range of each of the following relations:

a f(0, 5), (1, 3), (2, 2)g b f(x, y) j x2 + y2 = 9, x 2 Z g
c f(x, y) j y = sinx, x 2 R g d f(x, (y, z)) j y2 + z2 = x2, x, y, z 2 Z +, x 6 10g

2 A = f2, 3, 4, 5g and B = f5, 6, 7, 8g. Suppose R is a relation from A to B. Write R as a set

of ordered pairs if:

a xRy , x is a factor of y b xRy , y = x + 3

c xRy , y = 2x d xRy , y > 2x

3 Determine whether each of the following relations is:

i reflexive ii symmetric iii transitive.

a xRy if y is the brother of x b xRy if y is older than x

c xRy if x and y live in the same country d xRy if x and y have the same mother.

Example 14
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24 SETS, RELATIONS, AND GROUPS

4 Let R be a relation in N defined by xRy if x and y are co-prime.

Determine whether R is:

a reflexive b symmetric c transitive.

5 Let R be a relation in a family of sets. In each of the following cases, determine whether R is:

i reflexive ii symmetric iii transitive.

a ARB , A and B are disjoint b ARB , A µ B

c ARB , n(A) = n(B)

EQUIVALENCE RELATIONS

A relation in a set S which is reflexive, symmetric, and transitive is said to be an

equivalence relation in S.

We saw in the previous section that the relation of equality is reflexive, symmetric, and transitive. It is

therefore an equivalence relation.

If we graph a relation on the Cartesian plane, then the following apply:

² If R is reflexive, all possible points on the line y = x are included.

For example, if S = f¡2, ¡1, 0, 1g then (¡2, ¡2), (¡1, ¡1), (0, 0), (1, 1) 2 R and therefore

these points all appear on the graph.

² If R is symmetric then the graph is symmetric about the line y = x.

Note that since an equivalence relation in S is reflexive, (a, a) 2 S for all a 2 S, and so the domain

and range are both S.

THE EMPTY RELATION

A relation R in a set is a set of ordered pairs, so any subset of a set of ordered pairs will be a relation.

This includes the empty set, which is referred to as the empty relation.

For example, if A = f1, 2, 3g, examples of relations in A are: R1 = f(1, 3), (2, 1), (1, 1)g
R2 = f(1, 2)g
R3 = ? which is the empty relation.

For the empty relation R = ? in a non-empty set S, the following

are both vacuously true statements:

² for all a, b 2 S, if aRb then bRa

² for all a, b, c 2 S, if aRb and bRc then aRc.

Since there are no a, b 2 S such that aRb, the empty relation is

symmetric and transitive by default.

Also, since R = ?, (a, a) =2 R for all a 2 S. Hence R = ? is

not reflexive unless S = ?.

x yand are if

they share no common

factors except 1.

co-prime

In mathematics, a

is a statement asserting

something about all members

of an empty class, in this case

the empty relation .

vacuous

truth

R
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SETS, RELATIONS, AND GROUPS 25

We conclude that:

² The empty relation in a non-empty set is symmetric and transitive but is not reflexive. It is hence

not an equivalence relation.

² The empty relation in an empty set is reflexive, symmetric, and transitive, and is therefore an

equivalence relation.

Note that the empty relation in a non-empty set S is not the only instance of a relation which is symmetric

and transitive but not reflexive.

For example, consider the relation R in A = fa, b, c, dg, where

R = f(a, a), (a, b), (b, a), (b, b), (a, c), (c, a), (c, c), (c, b), (b, c)g.

Since (d, d) =2 R, R is not reflexive. However, we can see that R is both symmetric and transitive.

EQUIVALENCE CLASSES

If a set S is separated into subsets which are disjoint and such that their union is S, then we say S has

been partitioned. An equivalence relation in S partitions S into subsets which are called equivalence

classes. This result is proven with Theorem 1 below.

Examples:

1 Define the relation R in Z by

aRb , a and b have the same remainder on division by 2, where a, b 2 Z .

This relation partitions Z into two equivalence classes: the set of odd integers and the set of even

integers.

2 Let P be the set of polygons.

Define the relation R in P by

aRb , a and b have the same number of sides, where a, b 2 P .

R partitions P into an infinite number of equivalence classes: the set of triangles, the set of

quadrilaterals, the set of pentagons, and so on.

Theorem 1

If R is an equivalence relation in a set S, then the equivalent classes defined by R are disjoint subsets

of S which partition S.

Proof:

Let R be an equivalence relation in a non-empty set S.

For a 2 S, Sa = fb 2 S j aRbg is the equivalence class defined by a. Since R is reflexive, aRa

and therefore a 2 Sa.

Each element of S therefore lies in an equivalence class, and therefore S is the union of all equivalence

classes defined by R.

It remains to prove that distinct equivalence classes are disjoint.

Suppose for a, b 2 S, that Sa and Sb are two equivalence classes which are not disjoint. We

prove that Sa = Sb.

Let c 2 Sa \ Sb, since Sa \ Sb 6= ?.

(continued next page)
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26 SETS, RELATIONS, AND GROUPS

( ) ) If x 2 Sa, then aRx and so xRa fsymmetric property of an equivalence relationg.

Since c 2 Sa, aRc.

Now xRa and aRc implies xRc ftransitive property of an equivalence relationg.

Since c 2 Sb, bRc and ) cRb fsymmetric propertyg.

We also have xRc and cRb, so xRb ftransitive propertyg
) bRx fsymmetric propertyg

Since bRx, x 2 Sb.

x was any element of Sa, so Sa µ Sb.

( ( ) Similarly, we can show Sb µ Sa.

Together, Sa µ Sb and Sb µ Sa give Sa = Sb.

Thus, if two equivalence classes are not disjoint, then they are identical. Hence distinct equivalence

classes are disjoint.

Since S is the union of all equivalence classes defined by R, the set of equivalence classes in S are

disjoint subsets of S which partition S.

The number of distinct equivalence classes may range from one in the case R = S£S, to n(S) in the

case where each equivalence class contains only one element (for example for an equivalence relation R
defined by aRb , a = b in a finite set S).

Let A = f1, 2, 3, 4g and define a relation R by: xRy , x + y is even.

a Show that R is an equivalence relation. b Find the equivalence classes.

a Reflexive: x + x = 2x

Now 2x is even for all x 2 A, so xRx for all x 2 A.

Symmetric: If xRy then x + y is even.

Now x + y = y + x for all x, y 2 A

) y + x is also even, which means yRx.

So, if xRy, then yRx.

Transitive: Suppose xRy and yRz

) x + y is even and y + z is even.

) x + y = 2m and y + z = 2n where m, n 2 Z

) x + y + y + z = 2m + 2n

) x + z = 2m + 2n ¡ 2y

) x + z = 2(m + n ¡ y)

Since m, n, y 2 Z , m + n ¡ y 2 Z also

) x + z is even, which means xRz.

So, if xRy and yRz then xRz.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation in A.

b Now R = f(1, 1), (1, 3), (3, 3), (3, 1), (2, 2), (2, 4), (4, 4), (4, 2)g
The first four ordered pairs contain only the elements 1 and 3 from A, and the remaining four

ordered pairs contain only the elements 2 and 4.

Example 15
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SETS, RELATIONS, AND GROUPS 27

So, there are two equivalence classes: f1, 3g and f2, 4g.

R can be graphed on the Cartesian plane as shown.

Let S be the set of all triangles. Define the relation R such that if x, y 2 S, then xRy , x is

similar to y.

Show that R is an equivalence relation, and describe the equivalence classes.

Reflexive: A triangle is similar to itself since, for any triangle ABC,
AB

AB
=

BC

BC
=

AC

AC
.

Therefore xRx for all x 2 S.

Symmetric: If x is similar to y, then its corresponding angles are equal.

) y is also similar to x.

Hence for all x, y 2 S, if xRy then yRx.

Transitive: Consider triangles x, y, z 2 S.

If x is similar to y, then the corresponding angles of x and y are equal.

Also, if y is similar to z, the corresponding angles of y and z are equal.

Therefore, the corresponding angles of x and z must also be equal, and so x is similar

to z.

) for all x, y, z 2 S, if xRy and yRz then xRz.

Since R is reflexive, symmetric, and transitive, R is an equivalence relation in S.

The equivalence classes are sets of triangles, each set containing all triangles which are similar to

each other.

In this instance there are infinitely many equivalence classes, each with an infinite number of

members.

Consider the relation R in R , where for all x, y 2 R , xRy if x > y.

Show that R is not an equivalence relation.

The relation is not reflexive since, for example, 5 is not greater than itself.

This is sufficient to establish that R is not an equivalence relation.

However, we note that the relation is also not symmetric since, for example,

7 > 2, but 2 6> 7.

The relation is transitive since, if x > y and y > z, then x > z.

Example 17

Example 16

1 2 3 4 5

1

2

3

4

5 y

x

Every possible point of on the

line is plotted. This follows from

the reflexive property. The symmetry

property guarantees symmetry about the

line for all other points.

A A

y x

y x

£
=

=
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28 SETS, RELATIONS, AND GROUPS

EXERCISE B.3

1 Consider the relation R in f1, 2, 3, 4g where

R = f(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4), (4, 3)g. Determine whether the relation is:

a reflexive b symmetric c transitive.

2 Suppose S = f1, 2, 3, 4g and R is an equivalence relation in S.

If (1, 2), (2, 3), (4, 4) 2 R, what other ordered pairs must be in R?

3 If A = fa, b, cg, find relations in A which are:

a reflexive but neither symmetric nor transitive

b symmetric but neither reflexive nor transitive

c transitive but neither reflexive nor symmetric

d reflexive and symmetric but not transitive

e reflexive and transitive but not symmetric

f symmetric and transitive but not reflexive.

R is a relation in Z £ Z such that for (a, b), (x, y) 2 Z £ Z , (a, b)R(x, y) if and only if

x + 5y = a + 5b.

a Show that R is an equivalence relation.

b Describe how R partitions Z £ Z and state the equivalence classes.

a Reflexive: Letting a = x and b = y,

x + 5y = x + 5y which is true for all (x, y) 2 Z £ Z

Hence (x, y)R(x, y) for all (x, y) 2 Z £ Z .

Symmetric: If (a, b)R(x, y) then x + 5y = a + 5b

) a + 5b = x + 5y

) (x, y)R(a, b) for all (a, b), (x, y) 2 Z £ Z

Hence if (a, b)R(x, y) then (x, y)R(a, b) for all (a, b), (x, y) 2 Z £ Z .

Transitive: Suppose (a, b)R(x, y) and (x, y)R(c, d)

) x + 5y = a + 5b and c + 5d = x + 5y

) c + 5d = a + 5b

) (a, b)R(c, d) for all (a, b), (c, d) 2 Z £ Z

Hence if (a, b)R(x, y) and (x, y)R(c, d) then (a, b)R(c, d) for all

(a, b), (c, d), (x, y) 2 Z £ Z .

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

b For any (x, y) 2 Z £ Z , we know that x + 5y is some integer c 2 Z .

) the relation R partitions Z £ Z into an infinite number of equivalence classes, each

equivalence class containing the different points (x, y) that result in x + 5y being a

particular value. Each class is therefore the set of points with integer coordinates that lie

on the line x + 5y = c, c 2 Z .

For example:

f...., (0, 0), (5, ¡1), (10, ¡2), ....g is the equivalence class corresponding to x + 5y = 0.

f...., (1, 0), (6, ¡1), (11, ¡2), ....g is the equivalence class corresponding to x + 5y = 1.

Example 18
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SETS, RELATIONS, AND GROUPS 29

4 R is a relation in the family of lines in the Euclidean plane such that xRy , x and y have the

same gradient.

a Show that R is an equivalence relation. b Describe the equivalence classes.

5 Show that R is an equivalence relation in N if xRy , x ¡ y is divisible by 7.

6 Let S be the set of regular polygons. Define the relation R such that if x, y 2 S, then xRy , x
is similar to y.

a Show that R is an equivalence relation. b Describe the equivalence classes.

c Explain how the equivalence classes partition S.

7 Consider the relation R in Z , where for all x, y 2 Z , xRy if x 6 y. Show that R is not an

equivalence relation.

8 R is a relation in Z £ Z such that for (a, b), (x, y) 2 Z £ Z , (a, b)R(x, y) , x = a.

a Show that R is an equivalence relation.

b Describe how R partitions Z £ Z , and state the equivalence classes.

9 R is a relation in R £ R n f(0, 0)g such that for (a, b), (x, y) 2 R £ R n f(0, 0)g,

(a, b)R(x, y) if and only if ay = bx.

a Show that R is an equivalence relation.

b Describe how R partitions R £ R n f(0, 0)g, and state the equivalence classes.

10 R is a relation in R £ R such that for (a, b), (x, y) 2 R £ R , (a, b)R(x, y) if and only if

y ¡ b = 3x ¡ 3a.

a Show that R is an equivalence relation.

b Describe how R partitions R £ R , and state the equivalence classes.

11 Let R be the relation on Z defined by aRb , 3ab > 0 for a, b 2 Z .

a Determine whether R is:

i reflexive ii symmetric iii transitive.

b Is R an equivalence relation? Explain your answer.

12 The relation R on Z £ Z is defined by

(a, b)R(c, d) , a ¡ c is a multiple of 2 and b ¡ d is a multiple of 3

for (a, b), (c, d) 2 Z £ Z .

a Prove that R is an equivalence relation.

b Find explicitly the equivalence class containing: i (0, 0) ii (1, 3)

c List the remaining (distinct) equivalence classes.

RESIDUE CLASSES

The multiples of 3 such as 3, 6, and 9, each give remainder 0 on division by 3.

The integers 1, 4, and 7 each give remainder 1 on division by 3.

The integers 2, 5, and 8 each give remainder 2 on division by 3.

In fact, by the Division Algorithm, for any integer a, there exist a unique pair of integers q and r such

that a = 3q + r and r 2 f0, 1, 2g.

The value r is the remainder on division of a by 3.
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By definition, the remainder

on division by can only be

, , or .

3
0 1 2

30 SETS, RELATIONS, AND GROUPS

For example, for negative integers:

¡6 = 3 £ ¡2 + 0, so ¡6 has remainder 0 on division by 3

¡5 = 3 £ ¡2 + 1, so ¡5 has remainder 1 on division by 3

¡13 = 3 £ ¡5 + 2, so ¡13 has remainder 2 on division by 3.

In this way, the set Z of all integers is partitioned into three disjoint sets:

[0] = f...., ¡12, ¡9, ¡6, ¡3, 0, 3, 6, 9, 12, ....g is the set of multiples of 3,

which are the integers which have remainder 0 on division by 3.

[1] = f...., ¡8, ¡5, ¡2, 1, 4, 7, 10, ....g is the set of integers which have

remainder 1 on division by 3.

[2] = f...., ¡7, ¡4, ¡1, 2, 5, 8, 11, ....g is the set of integers which have

remainder 2 on division by 3.

The subsets [0], [1], [2] of Z are the residue classes modulo 3.

Notice that any two integers from the same residue class differ by a multiple of 3.

This property generalises as follows:

For any fixed integer n 2 Z + and any integer a 2 Z :

1 The remainder on division of a by n will be one of 0, 1, 2, ...., n ¡ 1.

2 The integers Z will be partitioned by the n disjoint residue classes modulo n which are denoted

by [0], [1], [2], ...., [n ¡ 1].

[0] is the set of multiples of n,

[1] is the set of integers which have remainder 1 on division by n,

...

[n ¡ 1] is the set of integers which have remainder n ¡ 1 on division by n.

3 Any two integers in the same residue class modulo n will differ by a multiple of n.

CONGRUENCE

Let n 2 Z + and let a, b 2 Z . We say a is congruent to b modulo n, written a ´ b (modn),

if and only if a ¡ b is a multiple of n.

If a is not congruent to b modulo n, we write a 6´ b (modn).

For example: Consider the integers 10 and 4.

² Since 10 ¡ 4 = 6, which is a multiple of 3, 10 ´ 4 (mod3).

Also, since 4 ¡ 10 = ¡6, which is a multiple of 3, 4 ´ 10 (mod3).

Hence congruence modulo 3 is symmetric.

² Both 10 and 4 have the same remainder 1 on division by 3, so 10 and 4 both belong

to the same residue class modulo 3.

These results can be generalised in the following theorem.
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SETS, RELATIONS, AND GROUPS 31

Theorem 2

Suppose n 2 Z + and a, b 2 Z . The following are equivalent statements:

1 a ´ b (modn)

2 b ´ a (modn)

3 a ¡ b ´ 0 (modn)

4 a and b have the same remainder on division by n

5 a and b belong to the same residue class modulo n

6 a and b differ by a multiple of n, which means a = b + sn for some s 2 Z .

Proof:

We need to prove that one statement is true if and only if each other statement is true.

1 , 2 a ´ b (modn)

, a ¡ b = sn for some s 2 Z fby definition of congruence modulo ng
, b ¡ a = ¡sn, where ¡s 2 Z
, b ´ a (modn)

1 , 3 a ´ b (modn)

, a ¡ b = sn for some s 2 Z fby definition of congruence modulo ng
, (a ¡ b) ¡ 0 = ¡sn for some s 2 Z
, a ¡ b ´ 0 (modn) fby definition of congruence modulo ng

1 , 4 Firstly, a ´ b (modn)

, a ¡ b = sn for some s 2 Z .... ( ¤ )

( ) ) Suppose a and b have remainders r1 and r2 respectively, on division by n.

) a = nq1 + r1 and b = nq2 + r2 for some q1, q2 2 Z and

such that r1, r2 2 f0, 1, 2, ...., n ¡ 1g
) a ¡ b = (nq1 + r1) ¡ (nq2 + r2)

= n(q1 ¡ q2) + (r1 ¡ r2)

From ( ¤ ), a ¡ b = sn

) sn = n(q1 ¡ q2) + (r1 ¡ r2)

) (r1 ¡ r2) = n(s ¡ q1 + q2), which is a multiple of n.

But since r1, r2 2 f0, 1, 2, ...., n ¡ 1g the only solution is r1 ¡ r2 = 0.

Therefore r1 = r2, and so a and b have the same remainder on division by n.

( ( ) Suppose a and b have the same remainder r on division by n.

) a = nq1 + r and b = nq2 + r for some q1, q2 2 Z and

r 2 f0, 1, ...., n ¡ 1g.

) a ¡ b = n(q1 ¡ q2) + r ¡ r

= n(q1 ¡ q2)

) a ¡ b is a multiple of n, and hence by the definition of congruence

modulo n, a ´ b (modn).

(continued next page)
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32 SETS, RELATIONS, AND GROUPS

4 , 5 by definition of residue class modulo n.

5 , 6 a = q1n + r and b = q2n + r for some q1, q2 2 Z and r 2 f0, 1, ...., n ¡ 1g
, a ¡ b = (q1n + r) ¡ (q2n + r)

= n(q1 ¡ q2) + r ¡ r

= n(q1 ¡ q2) where (q1 ¡ q2) 2 Z

, a and b differ by a multiple of n.

For n 2 Z +, it can be proved that congruence modulo n is an equivalence relation in Z with equivalence

classes [0], [1], ...., [n¡ 1], the n residue classes modulo n. We prove the case n = 5 in the following

example.

Suppose R is a relation in Z such that xRy if and only if x ´ y (mod 5).

Show that R is an equivalence relation and describe the equivalence classes.

Reflexive: x ¡ x = 0 which is a multiple of 5

) by definition, x ´ x (mod 5) for all x 2 Z .

Hence xRx for all x 2 Z .

Symmetric: For x, y 2 Z , if xRy then x ´ y (mod 5)

) x ¡ y = 5s for some s 2 Z
) y ¡ x = 5(¡s) where ¡s 2 Z
) y ¡ x is a multiple of 5

) y ´ x (mod 5) fby definition of congruence modulo 5g
) yRx.

Hence if xRy then yRx for all x, y 2 R .

Transitive: For x, y, z 2 Z , suppose xRy and yRz.

) x ´ y (mod 5) and y ´ z (mod 5)

) x ¡ y = 5s and y ¡ z = 5t for some s, t 2 Z .

) x ¡ z = x ¡ y + y ¡ z

= 5s + 5t

= 5(s + t) where (s + t) 2 Z

) x ¡ z is a multiple of 5

) x ´ z (mod 5) fby definition of congruence modulo 5g
) xRz.

Hence, if xRy and yRz then xRz for all x, y, z 2 Z .

Since R is reflexive, symmetric, and transitive, it is an equivalence relation.

Equivalence classes: If a 2 Z , then the other elements of the equivalence class to which a
belongs will be a § 5, a § 10, a § 15, .... .

There will be 5 such classes corresponding to the 5 possible remainders on

division by 5: 0, 1, 2, 3, 4.

Example 19
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The 5 residue classes modulo 5 are:

[0] = f...., ¡10, ¡5, 0, 5, 10, ....g is the set of multiples of 5.

[1] = f...., ¡9, ¡4, 1, 6, 11, ....g is the set of integers which leave

remainder 1 on division by 5.

[2] = f...., ¡8, ¡3, 2, 7, 12, ....g is the set of integers which leave

remainder 2 on division by 5.

[3] = f...., ¡7, ¡2, 3, 8, 13, ....g is the set of integers which leave

remainder 3 on division by 5.

[4] = f...., ¡6, ¡1, 4, 9, 14, ....g is the set of integers which leave

remainder 4 on division by 5.

In the above example, it can be seen that each integer belongs to one and only one residue class. These

sets are therefore pair-wise disjoint and their union is Z .

The set of residue classes modulo 5 is called Z 5 and is written f[0], [1], [2], [3], [4]g or just f0, 1, 2, 3, 4g.

In general,

Z n = f0, 1, 2, ...., n ¡ 2, n ¡ 1g is the set of residues modulo n, n 2 Z +.

EXERCISE B.4

1 If a ´ b (modn) and c ´ d (modn), prove that:

a a + c ´ b + d (modn) b ac ´ bd (modn)

2 Find the smallest positive integer x that is a solution of the congruence ax ´ 1 (mod11) for each

of the values a = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

3 Suppose R is a relation in Z such that xRy if and only if x ´ y (modn), n 2 Z +. Show that

R is an equivalence relation and describe the equivalence classes.

4 Determine whether the relation R in N is an equivalence relation if xRy , x2 ´ y2 (mod 3).

5 a If a ´ b (modn), show that a2 ´ b2 (modn).

b If a2 ´ b2 (modn), show that it is not necessarily true that a ´ b (modn).

GRAPHICS
CALCULATOR

INSTRUCTIONS
FOR CONGRUENCE
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34 SETS, RELATIONS, AND GROUPS

The work in this section follows on from Chapter 2 of the Core HL text.

A relation f from set A to set B, is said to be a function from A to B if, for each x 2 A, there is at

most one element y 2 B such that (x, y) 2 f .

Functions are sometimes referred to as mappings.

The domain of the function is A or a subset of A.

B is called the codomain. The range of f will be a subset of B.

Rather than write (x, y) 2 f or xfy, the standard notation used is y = f(x) or f : x 7! y.

The diagrams below map relations from A = f1, 2, 3, 4g to B = f1, 2, 3, 4g.

Determine whether each relation is a function. If it is, state the domain, codomain, and range.

a b c

a The element 1 in A is mapped to two elements, 1 and 2, in B.

) the relation is not a function.

b Each element in A is mapped to exactly one element in B, so the relation is a function.

The domain of the function is f1, 2, 3, 4g, the codomain is also f1, 2, 3, 4g,

and the range is f1, 2, 3g.

c Each element in A is mapped to at most one element in B, so the relation is a function.

The domain is f1, 2, 4g, the codomain is f1, 2, 3, 4g, and the range is f1, 2, 3g.

Determine whether each of the following relations is a function:

a the relation in N , f(1, 3), (2, 5), (2, 3), (3, 7)g
b the relation in R defined by f(x, y) j y > xg
c the relation R from A = f1, 2, 3, 4g to B = f1, 2, 3, 4g where

R = f(1, 4), (2, 4), (3, 4), (4, 1)g
d the relation f : R ! R where f(x) = 2x2 ¡ 3.

a The relation is not a function, as 2 is mapped to two different elements, 5 and 3.

b The relation is not a function, as each element x is mapped to an infinite number of elements

y.

c The relation is a function since, for each different first component of the ordered pairs, there

is only one possible second component.

d The relation is a function since, for each value of x, there is only one value of 2x2 ¡ 3.

FUNCTIONSC
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SETS, RELATIONS, AND GROUPS 35

A test for functions which can be graphed in the Cartesian plane is the vertical line test.

If we draw all possible vertical lines on the graph of a relation, the relation:

² is a function if each line cuts the graph no more than once

² is not a function if at least one line cuts the graph more than once.

For each of the following, graph the relation and use the vertical line test to determine (if possible)

whether or not the relation is a function.

a R = f(0, 0), (1, ¡1), (1, 1), (4, ¡2), (4, 2)g µ Z £ Z

b R =

½
(x, y) j y =

x3 ¡ 2x2 ¡ x + 2

x

¾
µ R £ R

a The vertical line x = 1 intersects the graph of

R in two points (1, ¡1) and (1, 1).

) by the vertical line test, R is not a function.

b It appears that every vertical line meets the graph

at most once. Note that the vertical asymptote

x = 0 does not meet the graph at all. However,

only a portion of the graph can be shown, as the

domain of the relation is R .

To prove this relation is a function we would need

to show algebraically for all x, y1, y2 2 R , that

if (x, y1), (x, y2) 2 R, then y1 = y2.

The above example shows that the vertical line test can only be used to prove that a relation is not a

function.

INJECTIONS

If a function f is such that each element in the range corresponds to only one element in the domain,

then f is said to be one-to-one or an injection.

To show that a function is an injection, it is sufficient to prove that f(x1) = f(x2) implies x1 = x2.

Alternatively, if f is differentiable then showing that either f 0(x) > 0 for all x in the domain, or

f 0(x) < 0 for all x in the domain, will prove that f is an injection.

Example 22
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36 SETS, RELATIONS, AND GROUPS

Is the illustrated function from

A = f1, 2, 3g to B = f1, 2, 3, 4g
an injection?

The function is an injection since each element in the range corresponds to only one element in

the domain. In other words, no two elements in the domain are mapped to the same element in

the range.

Prove that the function f : Z + ! Z + where f(x) = x2 is an injection.

Suppose there is an element in the range which corresponds to two distinct elements x1 and x2 in

the domain, where x1 6= x2.

) f(x1) = f(x2)

) x 2
1 = x 2

2

) x 2
1 ¡ x 2

2 = 0

) (x1 ¡ x2)(x1 + x2) = 0

) x1 = §x2

) x1 = x2 fsince x1, x2 2 Z +g
This is a contradiction, so f is an injection.

If a function can be graphed in the Cartesian plane, then the horizontal line test may be used to show

a function is not an injection.

If any horizontal line intersects the graph of a function more than once,

then the function is not an injection.

Use the horizontal line test to show the function f : R ! R such that f(x) = x2, is not an

injection.

The horizontal line y = 1 meets the graph in the two distinct points (¡1, 1) and (1, 1).

Hence f(¡1) = f(1) = 1, and so f is not an injection.

Example 25

Example 24

Example 23
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SETS, RELATIONS, AND GROUPS 37

SURJECTIONS

For a function f from A to B, f is said to be onto or a surjection if the range of f is B.

Every element in B will be the image of an element in A, so the codomain is the same as the range.

Is the illustrated function from

A = f1, 2, 3, 4g to B = f1, 2, 3g
a surjection?

The function is a surjection, as every element of B is the image of some element of A.

Determine whether each of the following functions is a surjection:

a f : R ! R + [ f0g where f(x) = x2 b f : Z + ! Z + where f(x) = 2x.

a f is a surjection because every non-negative real number is the square of a real number.

b If we take any positive integer and double it, we get an even positive integer.

) no elements of Z + will map to an odd positive integer.

) not all elements in the codomain correspond to elements in the domain.

) f is not a surjection.

BIJECTIONS

A function which is both an injection and a surjection is called a bijection.

Is the illustrated function from

A = f1, 2, 3, 4g to B = f1, 2, 3, 4g
a bijection?

Each element in the domain maps to at most one element in the range, so the mapping is indeed

a function.

Each element of the codomain is the image of at most one element from the domain, so the function

is an injection (one-to-one).

Each element in the codomain is in the range, so the function is a surjection (onto).

) since the function is both an injection and a surjection, it is a bijection.

Example 28

Example 27
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38 SETS, RELATIONS, AND GROUPS

Determine whether each of the following functions is a bijection:

a f : R ! R where f(x) = x3 b f : R ! R where f(x) = x2

c f : R + ! R + where f(x) = x2.

a Each real number has a unique real cube root, so f is an injection.

Each real number is the cube of a unique real number, so f is a surjection.

) f is a bijection.

b f is not an injection since up to two elements of the domain can map to the same element of

the range. For example, f(¡2) = f(2) = 4.

Also, no negative real number is the square of a real number, so the range is not the whole

of the codomain. The function is therefore also not a surjection.

) f is not a bijection.

c f is an injection since each element of the range is the square of only one element in the

domain.

f is also a surjection since each real positive number is the square of a real positive number.

) f is a bijection.

EXERCISE C.1

1 The diagrams below map relations from A = f1, 2, 3g to B = f1, 2, 3g.

Determine whether each relation is a function. If it is, state the domain, codomain, and range.

a b c

2 Determine whether each of the following relations is a function:

a the relation in Z , f(0, ¡2), (1, 0), (2, 2), (3, 4)g
b the relation in R defined by f(x, y) j x > yg
c the relation in R defined by f(x, y) j y =

2

x2
, x 6= 0g

d the relation in Z defined by f(3, 2), (2, 2), (1, 2), (2, ¡1), (1, ¡1), (0, ¡1)g.

3 The diagrams below map functions from A = f1, 2, 3, 4g to B = f1, 2, 3, 4g. In each case,

determine whether the function is:

i an injection ii a surjection iii a bijection.

a b
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SETS, RELATIONS, AND GROUPS 39

4 For each of the following, graph the relation and use the vertical line test to determine (if possible)

whether or not the relation is a function.

a R = f(1, 2), (1, 3), (2, 4), (3, 5)g µ Z + £ Z +

b R = f(x, y) j y = sinxg µ R £ R

c R = f(x, y) j x2 + 2y2 = 1g µ R £ R .

5 Use true and false to complete the following table for the given relations from f1, 2, 3, 4, 5g to

f1, 2, 3, 4, 5g.

Relation Function Injection Bijection

a f(1, 2), (2, 4), (3, 5), (1, 3), (4, 1), (5, 2)g
b f(1, 5), (2, 4), (3, 5), (4, 5), (5, 3)g
c f(1, 3), (2, 4), (3, 5), (4, 2), (5, 1)g

6 If possible, use the horizontal line test to determine whether each function is not an injection.

a f : R ! R where f(x) = x3 b f : R ! R where f(x) = x3 ¡ x

c f : R + ! R where f(x) = x2 + 2x ¡ 24

7 State whether each of the following relations is a function, and if so, determine whether it is:

i an injection ii a surjection iii a bijection.

a The relation R from f0, 1, 2g to f1, 2g where R = f(0, 1), (1, 2), (2, 2)g
b The relation R from f0, 1, 2g to f1, 2g where R = f(0, 1), (1, 1), (2, 1)g
c The relation R from f0, 1, 2g to f1, 2g where R = f(0, 1), (1, 1), (1, 2), (2, 2)g
d The relation from Z to Z + defined by f(x, y) j y = x2 + 1g
e The relation from R 2 to R defined by (x, y)Rz if and only if z = x2 + y2.

f The relation from Z £ Z to Z £ Z where (a, b)R(x, y) if and only if y = a and x = b.

8 Determine whether each of the following functions is a bijection. Give reasons for your answers.

a f : R ! R , f(x) = 2x ¡ 1

b f : R ! Z , f(x) = bxc, where bxc means “the greatest integer less than or equal to x”

c f : Z ! Z + [ f0g, f(x) = jxj
d f : Q + ! Q +, f(x) = x2

e f :
£
0, ¼

2

¤ ! [0, 1], f(x) = sinx

f f : Z + ! Z +, f(x) = 2x

9 Consider a function f : S ! S. Let f(A) = ff(x) j x 2 Ag and f(B) = ff(x) j x 2 Bg.

Prove that if A µ B µ S then f(A) µ f(B).

10 Find an example of a function f : R ! R which is:

a one-to-one but not onto b onto but not one-to-one

c one-to-one and onto d neither one-to-one nor onto.
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40 SETS, RELATIONS, AND GROUPS

11 a Let f : S ! S be a function with domain S = f1, 2, 3g.

Find, if possible, an example of a function f which is:

i onto but not one-to-one ii one-to-one but not onto.

b Complete the following:

Let f : S ! S be a function with domain S, where S is any finite set.

f is one-to-one , f is ...... .

12 Let P = fp(x) j p(x) is a polynomial of degree n, n 2 Z + [ f0g with coefficients in R g.

Define f : P ! P where f(p(x)) = p0(x), the derivative of p(x). Determine whether f is:

a a function b an injection c a surjection d a bijection.

COMPOSITION OF FUNCTIONS

Suppose f is a function from A to B and g is a function from B to C.

We can define the composite function g(f(x)) or g ± f from a subset of A to C provided the

domain of g contains the range of f .

In general, the domain of g ± f is fx j x 2 domain of f and f(x) 2 domain of gg.

Let f map f1, 2, 3, 4g to f5, 6, 7g where f = f(1, 6), (2, 6), (3, 5), (4, 7)g.

Let g map f5, 6, 7g to f8, 9g where g = f(5, 8), (6, 9), (7, 8)g.

Find, if possible: a g ± f b f ± g

a (g ± f)(1) = g(f(1)) = g(6) = 9

(g ± f)(2) = g(f(2)) = g(6) = 9

(g ± f)(3) = g(f(3)) = g(5) = 8

(g ± f)(4) = g(f(4)) = g(7) = 8

) g ± f = f(1, 9), (2, 9), (3, 8), (4, 8)g
b f ± g is not defined because the domain of f does not contain the range of g.

Let f : R ! R and g : R ! R where f(x) = x+2 and g(x) = x3.

Find: a (g ± f)(x) b (f ± g)(x)

a (g ± f)(x) = g(f(x)) = g(x + 2) = (x + 2)3

b (f ± g)(x) = f(g(x)) = f(x3) = x3 + 2

Example 31

Example 30

Even when both functions

are defined, in general,

.g f f g± 6 ±=
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SETS, RELATIONS, AND GROUPS 41

INVERSE FUNCTIONS

If f is a bijection from A to B such that f : x 7! y, then the function f is said to be invertible, and

it is possible to define a new function such that y is mapped to x. This function is called the inverse of

f , denoted f¡1, and is a function from B to A.

If f is written as a set of ordered pairs, then the inverse function f¡1 is obtained by reversing the order

of the components in each pair. Note that since f is a bijection, f¡1 is also a bijection.

It follows that:

For f a bijection f : A ! B, the inverse of f is the function f¡1 : B ! A which satisfies:

² (f¡1 ± f)(x) = x for all x in the domain of f

² (f ± f¡1)(x) = x for all x in the domain of f¡1.

The domain of f equals the range of f¡1.

The range of f equals the domain of f¡1.

Find the inverse of the bijection from A = f1, 2, 3, 4g to B = f1, 2, 3, 4g
where f = f(1, 3), (2, 2), (3, 4), (4, 1)g

Since f is a bijection, f¡1 exists.

Swapping the order of coordinates in each pair we find

f¡1 = f(3, 1), (2, 2), (4, 3), (1, 4)g.

Find the inverse of f : R ! R where f(x) = 2x3 + 1.

First, we note that f is both an injection and a surjection, so f is a bijection and

therefore has an inverse. Next, we let y = 2x3 + 1.

We then interchange x and y, which has the effect of reversing the order of the

components of each ordered pair of the function.

) for the inverse function, x = 2y3 + 1

) 2y3 = x ¡ 1

) y3 =
x ¡ 1

2

) y =
3

r
x ¡ 1

2

So, f¡1(x) =
3

r
x ¡ 1

2
.

Example 33

Example 32
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42 SETS, RELATIONS, AND GROUPS

Let f : [5, 1[ ! R be defined by f(x) =
p
x ¡ 5 .

a Find the inverse f¡1 of f . b State the domain and range of f .

c State the domain and range of f¡1. d Graph both functions on the same set of axes.

a f is both an injection and a surjection, so f is a bijection and therefore has an inverse.

Let y =
p
x ¡ 5.

Interchanging x and y, x =
p

y ¡ 5

) x2 = y ¡ 5

) y = x2 + 5

) f¡1(x) = x2 + 5.

b The domain of f is [5, 1[ and the range of f is [0, 1[ .

This can be seen from

the graph of y = f(x):

c The domain of f¡1 = the range of f = [0, 1[ .

The range of f¡1 = the domain of f = [5, 1[ .

d

EXERCISE C.2

1 Let f map f1, 2, 3g to f4, 5, 6g where f = f(1, 5), (2, 6), (3, 4)g.

Let g map f4, 5, 6g to f0, 1g where g = f(4, 1), (5, 0), (6, 1)g.

Find, if possible: a g ± f b f ± g

2 Suppose A = f0, 1, 2, 3g. Let f and g be functions mapping A to A, where

f = f(0, 1), (1, 2), (2, 0), (3, 3)g and g = f(0, 2), (1, 3), (2, 0), (3, 1)g.

a Find:

i (f ± g)(1) ii (g ± f)(1) iii (f ± g)(3) iv (g ± f)(3)

b Find:

i f¡1 ii g¡1 iii (g ± f)¡1 iv (f¡1 ± g¡1)

Example 34

y

x

y = f(x)

5

y f(x) y f (x)

y x

and

are reflections of each

other in the line .

= =

=

-1

y

x5

5

y = f (x)-1

y = f(x)

y = x
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SETS, RELATIONS, AND GROUPS 43

3 Find the inverse of:

a f : Z ! Z where f(x) = 1 ¡ x b f : R ! R where f(x) = x3 ¡ 2.

4 Let f be defined by f(x) =
p

1 ¡ x.

a State the domain and range of f . b Graph y = f(x).

c Find the inverse f¡1 of f . d State the domain and range of f¡1.

5 f and g are functions with domain R + such that: f(x) = ln(x + 1) and g(x) = x2.

Find each of the following:

a (g ± f)(x) b (f ± g)(x) c f¡1(x)

d (g ± f)¡1(x) e (f¡1 ± g¡1)(x)

6 Let f : R ! R and g : R ! R be invertible functions. Prove that g ± f is an invertible function

and that (g ± f)¡1 = f¡1 ± g¡1.

7 For each of the following real-valued functions, determine whether f is invertible, and if it is,

find f¡1.

a f(x) = ex + 3e¡x b f(x) = ex ¡ 3e¡x

8 Let f : R + £ R + ! R + £ R + be defined by f(x, y) =
³
y

x
, xy

´
.

a Prove that f is a bijection.

b Find a formula for f¡1 : R + £ R + ! R + £ R +.

e Graph y = f¡1 on the same set of axes used in b.
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44 SETS, RELATIONS, AND GROUPS

Given a non-empty set S, a binary operation on S is a rule for combining any two elements a, b 2 S
to give a unique result c, where c is not necessarily an element of S.

Many binary operations are familiar from operations on number. Addition, subtraction, multiplication,

and division are all examples of binary operations.

For example, given the set of real numbers R , the binary operation of addition with 3 and 5 gives 8, and

we write 3 + 5 = 8.

Less familiar binary operations between two elements in a set are often defined using a symbol such as ¤.

Let a binary operation ¤ on Z be defined by a ¤ b = a + 2b ¡ 3

Find:

a 3 ¤ 5 b 3 ¤ 0 c 0 ¤ 3 d ¡5 ¤ 0

a 3 ¤ 5 = 3 + 2 £ 5 ¡ 3

= 10

b 3 ¤ 0 = 3 + 2 £ 0 ¡ 3

= 0

c 0 ¤ 3 = 0 + 2 £ 3 ¡ 3

= 3

d ¡5 ¤ 0 = ¡5 + 2 £ 0 ¡ 3

= ¡8

CLOSURE

A set S is said to be closed under the binary operation ¤, or the binary operation ¤ is said to be

closed on S, if a ¤ b 2 S for all a, b 2 S.

A closed binary operation on a set S is a function with domain S £ S and codomain S.

For example:

² Given the set of integers Z , the binary operation of addition is closed. The sum of any two integers

is an integer.

² Given the set of natural numbers N , the binary operation of subtraction is not closed. For example,

5 ¡ 7 = ¡2, and this result does not belong to N . By contrast, the set of integers Z is closed under

subtraction because the result of subtracting any integer from another integer is always an integer.

Note that some definitions of a binary operation include closure as a property.

The definition used here does not, and so closure must not be assumed.

BINARY OPERATIONSD

Example 35

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_02\044IB_HL_OPT-SRG_02.cdr Wednesday, 19 June 2013 5:20:17 PM BRIAN



SETS, RELATIONS, AND GROUPS 45

Determine whether the following binary operations are closed on Z :

a a ¤ b =
a + b

a2
b a ¤ b = 2a+b c a ¤ b = a + b ¡ 3ab

a Consider a = 2 and b = 3.

2 ¤ 3 =
2 + 3

4
= 5

4 =2 Z

) the binary operation is not closed on Z .

b Consider a = ¡2 and b = 0.

¡2 ¤ 0 = 2¡2+0 = 1
4 =2 Z

) the binary operation is not closed on Z .

c Since a and b are in Z , their sum a + b
and product ab are also in Z .

) a + b ¡ 3ab is also in Z
) a ¤ b 2 Z
) the binary operation is closed on Z .

EXERCISE D.1

1 Define two binary operations in Q by a ¤ b = a ¡ b + 1 and a}b = ab ¡ a.

a Find:

i 3 ¤ 4 ii 4 ¤ 3 iii (¡2) } 3 iv 6 } 0

v 0 } 7 vi 4 ¤ ((¡5) } 2) vii (4 ¤ (¡5)) } 2

b Solve for x:

i 4 ¤ x = 7 ii x} 3 = ¡2

+ ¡ £ ¥
Z +

Z

Q +

Q

R

2 Copy and complete the table for closure using

true (T) and false (F):

3 Determine whether each of the following sets is closed under multiplication:

a fa + bi j a, b 2 Q , b 6= 0g b fa + bi j a, b 2 Q , a 6= 0g
c fa + bi j a, b 2 Q , a and b not both equal to zerog

4 State whether each of the following sets is closed under the given operation:

a The set of even positive integers f2, 4, 6, ....g under addition

b The set of even positive integers f2, 4, 6, ....g under multiplication

c The set of odd positive integers f1, 3, 5, ....g under addition

d The set of odd positive integers f1, 3, 5, ....g under multiplication

5 Determine whether the following binary operations are closed on: i Z ii Q

a a ¤ b = a2 ¡ b b a ¤ b =
a+ b

a
c a ¤ b =

p
a2b2 d a ¤ b =

p
jabj

Example 36

Addition, subtraction, and

multiplication are all

closed on .Z
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46 SETS, RELATIONS, AND GROUPS

ASSOCIATIVE LAW

Consider the following examples of repeated use of the binary operation multiplication on Z :

3 £ (2 £ 5)

= 3 £ 10

= 30

(3 £ 2) £ 5

= 6 £ 5

= 30

We observe that the order of grouping the terms makes no difference. This is true for multiplication of

all real numbers, so we say that multiplication in R is associative.

A binary operation ¤ on a set S is said to be associative if

a ¤ (b ¤ c) = (a ¤ b) ¤ c for all a, b, c 2 S.

For example:

² Addition in R is associative.

² 8 ¡ (3 ¡ 5) 6= (8 ¡ 3) ¡ 5 so subtraction in R is not associative.

² 12 ¥ (6 ¥ 2) 6= (12 ¥ 6) ¥ 2 so division in R is not associative.

If a binary operation is associative on a set, then the associativity will also hold in any subset

of the set.

By contrast, note that a binary operation is not necessarily closed on a subset of a set. Thus care must

be taken, as not all properties of an operation on a set are transferable to a subset.

Determine whether the following binary operations on R defined below are associative.

a a ¤ b = 2a + 3b b a ¤ b = a + b + ab

a (a ¤ b) ¤ c = (2a + 3b) ¤ c

= 2(2a + 3b) + 3c

= 4a + 6b + 3c

a ¤ (b ¤ c) = a ¤ (2b + 3c)

= 2a + 3(2b + 3c)

= 2a + 6b + 9c

6= (a ¤ b) ¤ c in general.

In fact, noting that (1 ¤ 0) ¤ 2 = 10

whereas 1 ¤ (0 ¤ 2) = 20

is enough to prove ¤ is not associative.

b (a ¤ b) ¤ c = (a + b + ab) ¤ c

= (a + b + ab) + c + (a + b + ab)c

= a + b + ab + c + ac + bc + abc

a ¤ (b ¤ c) = a ¤ (b + c + bc)

= a + (b + c + bc) + a(b + c + bc)

= a + b + c + bc + ab + ac + abc

= (a ¤ b) ¤ c

) since a ¤ (b ¤ c) = (a ¤ b) ¤ c for all a, b, c 2 R , the operation ¤ is associative.

As shown in the above example, to prove a law holds, the full general proof is required. To prove a law

does not hold, it is sufficient to give one example (called a counter-example) for which the law fails.

For more information, see the Appendix on Methods of Proof.

Example 37
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SETS, RELATIONS, AND GROUPS 47

NOTATION CONVENTIONS

Although multiplication and addition of real numbers are binary operations, since they are associative we

can write statements such as 3 + 6 + 17 or 2 £ 5 £ 7 without any need for grouping the terms into

pairs.

This is true in general for associative operations. So, if ¤ is associative then there is no ambiguity in

writing a ¤ b ¤ c rather than (a ¤ b) ¤ c or a ¤ (b ¤ c).

We will also follow the convention of writing a ¤ a ¤ a ¤ :::: ¤ a| {z }
n times

as an, so care must be taken here

to not assume that this operation is simply the multiplication of real numbers.

The familiar index laws apply for associative operations.

For example: ² am ¤ an = a ¤ a ¤ a ¤ :::: ¤ a| {z }
m times

¤ a ¤ a ¤ a ¤ :::: ¤ a| {z }
n times| {z }

m + n times

= am+n

² (am)n = am ¤ am ¤ :::: ¤ am| {z }
n times

= (a ¤ a ¤ :::: ¤ a| {z }
m times

) ¤ (a ¤ a ¤ :::: ¤ a| {z }
m times

) ¤ :::: ¤ (a ¤ a ¤ :::: ¤ a| {z }
m times

)

| {z }
n times

= a ¤ a ¤ :::: ¤ a| {z }
mn times

fbrackets can be removed since ¤ is associativeg

= amn

If ¤ is associative, then (am)n = amn and am ¤ an = am+n.

COMMUTATIVE LAW

A binary operation ¤ on a set S is said to be commutative if a ¤ b = b ¤ a for all a, b 2 S.

Multiplication and addition in R are examples of commutative operations. Subtraction in R is not

commutative.

Example 38

If ¤ is both associative and commutative on a set S, show that (a ¤ b)2 = a2 ¤ b2.

(a ¤ b)2 = (a ¤ b) ¤ (a ¤ b)

= a ¤ (b ¤ a) ¤ b fAssociative Lawg
= a ¤ (a ¤ b) ¤ b fCommutative Lawg
= (a ¤ a) ¤ (b ¤ b) fAssociative Lawg
= a2 ¤ b2

If ¤ is both associative and commutative then (a ¤ b)n = an ¤ bn.
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48 SETS, RELATIONS, AND GROUPS

Determine whether the following operations on R are commutative:

a a ¤ b = 2a + b b a ¤ b = 3a+b

a 3 ¤ 2 = 2 £ 3 + 2 = 8

2 ¤ 3 = 2 £ 2 + 3 = 7 6= 3 ¤ 2

) the operation ¤ is not commutative.

b b ¤ a = 3b+a

= 3a+b faddition on R is a commutative operationg
= a ¤ b

) the operation ¤ is commutative.

DISTRIBUTIVE LAW

Given two binary operations ¤ and ± on a set S, ¤ is said to be distributive over ±

if a ¤ (b ± c) = (a ¤ b) ± (a ¤ c) for all a, b, c 2 S.

For example:

² In R , multiplication is distributive over addition, since a(b + c) = ab + ac for all a, b, c 2 R .

² In R , addition is not distributive over multiplication, since in general a + (bc) 6= (a + b)(a + c).

For example, 1 + (2 £ 3) = 7 whereas (1 + 2) £ (1 + 3) = 12.

¤ and ± are binary operations on R defined by a ¤ b = a + 2b and a ± b = 2ab.

a Is ¤ distributive over ±? b Is ± distributive over ¤?

a a ¤ (b ± c) = a ¤ (2bc)

= a + 4bc

and (a ¤ b) ± (a ¤ c) = (a + 2b) ± (a + 2c)

= 2(a + 2b)(a + 2c)

= 2a2 + 4ac + 4ab + 8bc

6= a ¤ (b ± c) in general.

For example, 0 ¤ (1 ± 2) = 8 and (0 ¤ 1) ± (0 ¤ 2) = 16

) 0 ¤ (1 ± 2) 6= (0 ¤ 1) ± (0 ¤ 2)

Therefore ¤ is not distributive over ±.

b a ± (b ¤ c) = a ± (b + 2c)

= 2a(b + 2c)

= 2ab + 4ac

and (a ± b) ¤ (a ± c) = (2ab) ¤ (2ac)

= 2ab + 4ac

= a ± (b ¤ c)

Therefore ± is distributive over ¤.

Example 40

Example 39
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SETS, RELATIONS, AND GROUPS 49

EXERCISE D.2

1 Determine whether the following binary operations on R are:

i commutative ii associative

a a ¤ b = a + 2b b a ¤ b = a2 + b2 c a ¤ b = ab ¡ a ¡ b d a ¤ b =
1

a+ b

2 Prove by mathematical induction:

3 Suppose ¤ and } are binary operations on R defined by a ¤ b = a ¡ b and a} b = ab.
Determine whether:

a ¤ is distributive over } b } is distributive over ¤.

4 Suppose ¤ and } are binary operations on R + defined by a ¤ b = 3a + b and a} b = 2ab.
Determine whether:

a ¤ is distributive over } b } is distributive over ¤.

5

a Set difference is not associative. b Symmetric difference of sets is associative.

IDENTITY

Consider a binary operation ¤ on a set S. If there exists an element e 2 S such that e¤x = x¤e = x
for all x 2 S, then e is said to be an identity element for ¤ on S.

If an identity e for operation ¤ exists in S, we define using index notation x0 = e for all x 2 S.

For addition in R , the identity element is the number 0.

For multiplication in R , the identity element is 1.

Subtraction in R does not have an identity element because, although x ¡ 0 = x for all x 2 R ,

0 ¡ x 6= x for all x 2 R n f0g. For example, 0 ¡ 1 6= 1.

There is no identity for division in R .

For a commutative binary operation ¤ on S, to establish that there is an identity element e 2 S it is

sufficient to check that just one of e ¤ x = x or x ¤ e = x is true for all x 2 S.

Theorem 3

If a binary operation on a set has an identity element, then it is unique.

Proof: Suppose a binary operation ¤ on a set S has more than one identity element.

Let e and f be two such identity elements, where e 6= f .

) for all x 2 S, e ¤ x = x ¤ e = x .... (1) and f ¤ x = x ¤ f = x .... (2).

Since f 2 S, we can replace x by f in (1), so e ¤ f = f ¤ e = f .

Similarly, since e 2 S, we can replace x by e in (2), so f ¤ e = e ¤ f = e.

) e = f , which contradicts the original assumption.

) if it exists, the identity element is unique.

If ¤ is both associative and commutative on a set S, then (a ¤ b)n = an ¤ bn for all n 2 Z +.

Using suitable Venn diagrams, determine if each statement is true or false.
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50 SETS, RELATIONS, AND GROUPS

For each of the following operations, determine whether an identity element exists in R :

a a ¤ b = 3ab b a ¤ b = 3a + b

a Suppose e is an identity element for the binary operation ¤ on R .

) a ¤ e = a

) 3ae = a

) 3ae ¡ a = 0

) a(3e ¡ 1) = 0

) a ¤ e = a is satisfied by e = 1
3 for all a 2 R .

We must now either show that ¤ is commutative or that e¤a = a for all a 2 R and e = 1
3 .

Here we do the latter: e ¤ a = 1
3 ¤ a = 3(13)a = a

) an identity element e exists, and e = 1
3 .

b Suppose e is an identity element for the binary operation ¤ on R .

) a ¤ e = a

) 3a + e = a

) e = ¡2a, but this is not unique for all a 2 R .

) an identity element does not exist for ¤.

INVERSE

Consider a binary operation ¤ on a set S with an identity element e 2 S. For a 2 S, an inverse

element a¡1 2 S exists for a if and only if a¡1 ¤ a = a ¤ a¡1 = e.

For addition in R , each element a 2 R has inverse ¡a, since a + (¡a) = (¡a) + a = 0, where 0 is

the additive identity.

No inverse exists for addition on Z + for any element in Z +.

For multiplication in R , each element a 2 R nf0g has inverse
1

a
, since a £ 1

a
=

1

a
£ a = 1, the

multiplicative identity.

0 is the unique element in R which does not have a multiplicative inverse, since there is no element

x 2 R for which 0 £ x = x £ 0 = 1.

Theorem 4

Let ¤ be an associative binary operation on a set S with identity element e.

If an element a 2 S has an inverse, then it is unique.

Example 41
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SETS, RELATIONS, AND GROUPS 51

Proof:

Suppose an element a 2 S has more than one inverse.

Let two of these inverses be x and y, where x 6= y.

) x ¤ a = a ¤ x = e .... (1) and y ¤ a = a ¤ y = e .... (2)

Using (1), (x ¤ a) ¤ y = e ¤ y = y

) x ¤ (a ¤ y) = y fAssociative Lawg
) x ¤ e = y ffrom (2)g

) x = y

This contradicts the original assumption, so the inverse element (if it exists) must be unique.

The contrapositive of this theorem can be useful:

If the inverse of an element is not unique then associativity does not hold.

However, uniqueness of an inverse does not ensure that associativity holds.

Consider the binary operation ¤ on R defined by a ¤ b = 3ab.
Determine the values of a 2 R for which ¤ has an inverse, and the value of the inverse in each

case.

From Example 41, ¤ has identity element 1
3 .

If an element a has inverse b, then b ¤ a = a ¤ b = 1
3

) 3ba = 3ab = 1
3

) b =
1

9a
provided a 6= 0

) each element a 2 R nf0g has inverse
1

9a
, and element 0 has no inverse.

EXERCISE D.3

1 Where one exists, state the identity element for each of the following:

a R under addition b Z under multiplication

c R under ¤ where a ¤ b = a d R under ¤ where a ¤ b = 5ab

e R under ¤ where a ¤ b = 2a + ab + 2b f R under division.

2 For each of the following, state the identity, if it exists. If an identity exists, determine whether each

element in the set has an inverse. Whenever it can be found, state the inverse.

a Q under addition b Q under multiplication

c Z + under multiplication d R under ¤ where a ¤ b = 2ab

3 Let S = f2, 4, 6, 8g under the binary operation £10, which is multiplication modulo 10, or

a £10 b = (a £ b)(mod 10).

a Show that S is closed under £10. b Find, with justification, the identity element.

Example 42

For example, 4 £10 8 = 4 £ 8(mod 10) = 32(mod10) = 2.
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52 SETS, RELATIONS, AND GROUPS

a Explain why the set operations union and intersection are binary operations.

b For union of sets:

i is there an identity element ii does each set have an inverse?

c For intersection of sets:

i is there an identity element ii does each set have an inverse?

a For sets A and B, set union A [ B and set intersection A \ B are both binary operations

as they are operations on two sets and they have unique results.

b i Consider a set E such that A [ E = E [ A = A for all sets A.

) E µ A for all sets A.

E = ?, the empty set, is the unique set with this property.

) for the union of sets, the identity element is the empty set ?.

ii For set union, a set A has inverse B if and only if A [ B = B [ A = ?, the identity

for set union.

But A [ B = ? , A = B = ?.

) no non-empty set has an inverse under the union of sets. However, ? is its own

inverse.

c i Consider a set E such that A \ E = E \ A = A for all sets A.

) A µ E for all sets A.

) E = U , since the universal set U is the only set with this property.

) for the intersection of sets, the identity element is the universal set U .

ii For set intersection, a set A has inverse B if and only if A \ B = B \ A = U , the

identity for set intersection.

But A \ B = U only when A = B = U .

) no set other than U has an inverse under set intersection, and the set U is its own

inverse.

4 a Let } be a binary operation in Q n f1g such that a} b = a ¡ ab + b.

i Show that Q n f1g is closed under }. ii Prove that } is associative in Q n f1g.

iii Find an identity element or show that one does not exist.

iv Does each element have an inverse?

b Are the results in a the same for } in R n f1g?

5 A binary operation ¤ is defined on the set R 2 by (a, b) ¤ (c, d) = (ac ¡ bd, ad + bc).

a Is ¤ associative? b Is ¤ commutative?

c Is there an identity element in R 2? If so, state it.

d Does each element in R 2 have an inverse?

e Whenever it exists, find the inverse of (a, b).

6 Let P = fp(x) j p(x) is a polynomial of degree n 2 Z + [ f0g, with coefficients in R g.

Consider the set P under the operation addition. Determine, where possible:

a if P is closed under addition b if the operation is commutative

c if the operation is associative d the identity in P

e the inverse of each element in P .

Example 43
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CAYLEY TABLES

The possible results of a binary operation on a finite set can be set out

in a Cayley table, named after Arthur Cayley (1821 - 1895).

For a binary operation ¤ on a finite set S,

the Cayley table is a square array. Each

element of S appears once to the left of

a row, and once heading a column. The

result a ¤ b is entered at the intersection of

the row corresponding to a and the column

corresponding to b.

Let a binary operation on S = f0, 1, 2, 3g be defined by a ¤ b = a2 + ab.

a Construct the Cayley table for ¤. b Is the operation closed on S?

c Is the operation commutative?

a The Cayley table is: ¤ 0 1 2 3

0 0 0 0 0
1 1 2 3 4
2 4 6 8 10
3 9 12 15 18

When we study groups, we will see the significance of when a Cayley table is a Latin square.

A Latin square of order n, n 2 Z +, is an n £ n array using n distinct symbols, where each row

and column contains each symbol exactly once.

For example: 1 2 3
3 1 2
2 3 1

is a Latin square of order 3.

1 2 3
3 2 1
2 1 2

is not a Latin square since, for example, row 3 contains the element 2 twice.

A Latin square of infinite order can be similarly defined.

Example 44

b

a a b¤

¤

b From the table, ¤ is not closed on S.

For example, 3 ¤ 2 = 15 =2 S.

c The lack of symmetry about the leading diagonal indicates that ¤ is not commutative.

For example, 3 ¤ 2 = 15 whereas 2 ¤ 3 = 10.
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EXERCISE D.4

1 Construct a Cayley table for multiplication modulo 5 on f1, 2, 3, 4g.

a Use the table to solve the following for x in modulo 5.

i 2x = 1 ii 4x = 3

iii 3x = 4 iv 4x + 3 = 4

b State the identity, if it exists.

c Verify that 3¡1 = 2.

d State the inverse of each other element.

2 Each of the following Cayley tables describes a different closed binary operation ¤ in S = fa, b, cg.

For each operation:

i Find an identity element, if it exists.

ii Find an inverse for each element, if one exists.

iii State whether the operation is commutative.

iv State whether the operation is associative.

v State whether the Cayley table is a Latin square.

a ¤ a b c

a a b c

b b c a

c c a b

b ¤ a b c
a a a a

b a b c

c a c b

c ¤ a b c

a a c b

b c b a

c b a c

d ¤ a b c

a c a b

b a b c

c b c c

e ¤ a b c

a b c a

b a b c

c c a b

3 a Let U4 = f1, i, ¡i, ¡1g µ C and consider the operation of multiplication in U4.

i Construct a Cayley table for the operation.

ii Is the operation: A commutative B associative?

iii State the identity, if it exists.

iv Find the inverse of each element, if possible.

b Now consider Un = f1, ®, ®2, ...., ®n¡1g, n 2 Z +, where ® = cis

³
2¼

n

´
.

i Describe the set Un. ii Show that when n = 4, this is the set f1, i, ¡i, ¡1g.

Multiplication modulo is

.

5
a b (a b)( 5)£ £5 = mod
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SETS, RELATIONS, AND GROUPS 55

A set with one or more operations defined on it is called an algebraic structure.

Within the set of algebraic structures there is a hierarchy:

An algebraic structure with one closed binary operation defined is referred to as a groupoid.

If the associative law is obeyed, the groupoid qualifies as a semigroup.

A semigroup with an identity element is known as a monoid.

In some of these monoids, each element will have an inverse and this leads us to groups.

A non-empty set G on which a binary operation ¤ is defined is said to be a group, written fG, ¤g,

if each of the following four axioms hold:

² G is closed under ¤.

So, for all a, b 2 G, a ¤ b 2 G.

² ¤ is associative on G.

So, for all a, b, c 2 G, (a ¤ b) ¤ c = a ¤ (b ¤ c).

² ¤ has an identity element in G.

So, there exists an element e 2 G such that a ¤ e = e ¤ a = a for all a 2 G.

² Each element of G has an inverse under ¤.

So, for each a 2 G, there exists an element a¡1 2 G such that a¡1 ¤ a = a ¤ a¡1 = e.

For a group fG, ¤g, if it is clear which operation is the relevant group operation, the group will

sometimes be referred to simply as G.

A group is called finite if it has a finite number of elements, or infinite if it has an infinite number of

elements.

By Theorems 3 and 4, the identity element in a group is unique, and each element in the group has

a unique inverse. These results can be proved directly from the four group axioms which are in the

definition of a group.

In general, we may assume the closure of the set of real numbers R and the set of integers Z under the

operations +, ¡, and £. R n f0g is closed under ¥.

For example:

² We have seen that Z µ Q µ R µ C . Each of these sets, together with the operation of addition,

forms a group with identity 0. So, fZ , +g, fQ , +g, fR , +g, and fC , +g are all infinite

groups. In each case, the inverse of an element x is x¡1 = ¡x, the negative of x, since

x + (¡x) = (¡x) + x = 0, the identity. These are all infinite groups.

² The integers modulo 3, Z 3 = f0, 1, 2g with addition modulo 3, form the finite group fZ 3, +3g
with three elements. The identity is 0, since 0 +3 0 = 0, 1 +3 0 = 0 +3 1 = 1

and 2 +3 0 = 0 +3 2 = 2.

In this case, the inverses are:

1¡1 = 2, since 1 +3 2 = 2 +3 1 = 0, the identity,

2¡1 = 1, since 2 +3 1 = 1 +3 2 = 0, and

0¡1 = 0.

² It can be shown that for Z n = f0, 1, 2, ...., n¡1g, n 2 Z +, and +n addition modulo n, fZ n, +ng
is a (finite) group.

GROUPSE
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56 SETS, RELATIONS, AND GROUPS

² The set R is closed under multiplication £, the operation £ is associative, and an identity 1 exists

in R for multiplication. However fR , £g is not a group since the element 0 2 R has no inverse

under £. It can be shown that fR n f0g, £g is a group.

The given Cayley table is for the operation ¤
on the set S = fe, a, b, c, d, xg.

Show that:

a S is closed under ¤
b there is an identity element for ¤ in S

c each element of S has a unique inverse

d ¤ is not associative.

¤ e a b c d x

e e a b c d x

a a e c d x b

b b d e x c a

c c x a e b d

d d b x a e c

x x c d b a e

a For all a, b 2 S, a ¤ b 2 S. ) S is closed under ¤.

b For all y 2 S, e ¤ y = y ¤ e = y. ) since e 2 S, the identity is e.

c For all y 2 S, y ¤ y = e. ) each element has a unique inverse, which is itself.

d a ¤ (b ¤ c) = a ¤ x = b

(a ¤ b) ¤ c = c ¤ c = e 6= a ¤ (b ¤ c)

Thus ¤ is not an associative operation, and so S does not form a group under ¤.

Notice in this example that each element has a unique inverse. So, while associativity implies that each

inverse is unique (see Theorem 4), the converse of this result is not true. When verifying that a set is a

group, the property of associativity must therefore be checked.

However, if the Cayley table indicates the inverse is not unique, we can conclude that the operation is

not associative.

CANCELLATION LAWS

The group axioms lead to the following cancellation laws. As commutativity is not a group axiom, it is

necessary to consider both left and right cancellation laws.

Theorem 5

Given a group fG, ¤g, the following apply for all a, b, c 2 G:

Left cancellation law If a ¤ b = a ¤ c then b = c.

Right cancellation law If b ¤ a = c ¤ a then b = c.

Proof of right cancellation law:

b ¤ a = c ¤ a

) (b ¤ a) ¤ a¡1 = (c ¤ a) ¤ a¡1 fmultiply on the right by a¡1,

where a¡1 2 G is the inverse of a,

which exists since G is a groupg
) b ¤ (a ¤ a¡1) = c ¤ (a ¤ a¡1) fAssociative Lawg

) b ¤ e = c ¤ e fwhere e 2 G is the identityg
) b = c

A similar proof establishes the left cancellation law.

Example 45
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CAYLEY TABLES FOR GROUPS

Cayley tables for groups have the property of being Latin squares, as described in the following theorem:

Theorem 6

If fG, ¤g is a group, then each element of G will appear exactly once

in every row and exactly once in every column of its Cayley table.

Proof:

Let a, p 2 G.

As fG, ¤g is a group, a¡1 2 G where a¡1 is the inverse of a

) a¡1 ¤ p 2 G and p ¤ a¡1 2 G for all a, p. fClosureg
Now a ¤ (a¡1 ¤ p) = (a ¤ a¡1) ¤ p fAssociativeg

= e ¤ p fe is the identity elementg
= p

Therefore for any p and a it is always possible to find an

element x = a¡1 ¤ p of G such that a ¤ x = p.

Hence p must be on the row corresponding to a. This means

that every element must appear on every row.

Similarly, we can show that an element y = p ¤ a¡1 of G
can be found such that y ¤ a = p, so p will appear in every

column.

Now we need to show that the elements appear only once in each row and column.

For finite groups, we could note that there are only n spaces to fill in each row and column. Since

each element must appear at least once, it can appear only once.

However more generally, suppose that x1 and x2 are such that a ¤ x1 = p and a ¤ x2 = p. Then

a ¤ x1 = a ¤ x2, and so x1 = x2. fleft cancellation lawg
We can argue similarly for each column.

Hence p must appear exactly once in every row and column.

The converse of Theorem 6 is not true. That is, a Latin square need not give rise to a group.

For example, Cayley table ¤ a b c

a a b c

b c a b

c b c a

is a Latin square, but ffa, b, cg, ¤g is not a group,

since for example there is no identity element: a is not an identity since b ¤ a = c 6= b

b is not an identity since b ¤ a = c 6= a

c is not an identity since c ¤ a = b 6= a.

pa

¤ a p-1 ¤

IB HL OPT

Sets Relations Groupsmagentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_02\057IB_HL_OPT-SRG_02.cdr Friday, 21 June 2013 6:19:54 PM BRIAN



58 SETS, RELATIONS, AND GROUPS

a Show that Z 4 n f0g, that is f1, 2, 3g, does not form a group under £4, multiplication

modulo 4.

b Prove that if n is composite, then Z n n f0g does not form a group under £n, multiplication

modulo n.

a The Cayley table for Z 4 n f0g under £4 is: £4 1 2 3

1 1 2 3

2 2 0 2

3 3 2 1

Z 4 n f0g is not closed under £4 as 2 £4 2 = 0 and 0 =2 Z 4 n f0g.

) Z 4 n f0g does not form a group under £4.

b If n is composite then n = pq for some p, q 2 Z + with 1 < p, q < n

Thus p, q 2 Z n and p £ q = n ´ 0 (modn)

) p £n q = 0.

But 0 =2 Z n n f0g
) Z n n f0g is not closed under £n

) Z n n f0g does not form a group under £n.

ABELIAN GROUPS

An Abelian group is a group which has the commutativity property. The set of Abelian groups is named

after the Norwegian mathematician Niels Henrik Abel (1802 - 1829).

A group fG, ¤g is Abelian if a ¤ b = b ¤ a for all a, b 2 G.

If the Cayley table for a group G is symmetric about the main diagonal, then a ¤ b = b ¤ a for all

a, b 2 G, and the group is Abelian.

a Show that the set Z 5 n f0g, that is f1, 2, 3, 4g, forms a group under £5, multiplication

modulo 5.

b Is this group Abelian?

a Closure: The Cayley table is: £5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

From the table a £5 b 2 Z 5 n f0g for all a, b 2 Z 5 n f0g.

Associative: This follows from the associativity of multiplication of integers.

Identity: The element 1 2 Z 5 n f0g is such that a £5 1 = 1 £5 a = a for all

a 2 Z 5 n f0g. Therefore 1 is the multiplicative identity element for Z 5 n f0g.

Inverse: 1 £5 1 = 1 and 4 £5 4 = 1, so each of 1 and 4 is its own inverse.

3 £5 2 = 2 £5 3 = 1, so 2 and 3 are inverses of each other.

Example 47

Example 46
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b

Show that the set of bijections on a set A under the operation composition of functions forms a

group. Is the group Abelian?

Closure: If f : A 7! A and g : A 7! A, then g ± f : A 7! A.

The composition of two bijections is a bijection, so closure applies.

Associative: The composition of functions is associative, since

(h ± g) ± f = (h ± g)(f(x))

= h(g(f(x)))

= h((g ± f)(x))

= h ± (g ± f)

) the composition of bijections is also associative.

Identity: The identity function e : x 7! x for x 2 A, is a bijection.

For all functions f , e ± f = f ± e = f
) there is an identity in the set of bijections under composition of functions.

Inverse: Every bijection f on A has an inverse f¡1 such that f ± f¡1 = f¡1 ± f = e.

Therefore the set of bijections on a set A forms a group under the operation composition of

functions.

In general, f ± g 6= g ± f , so the group is not Abelian. fsee Example 31g

Show that the set R with the binary operation + is an Abelian group.

Closure: When two real numbers are added, the result is always a real number. Therefore R
is closed under addition.

Associative: For all a, b, c 2 R , a + (b + c) = (a + b) + c = a + b + c.

Therefore + is an associative operation on R .

Identity: There exists an element 0 2 R such that for all a 2 R , a + 0 = 0 + a = a.

Therefore there is an identity element in R for +.

0 is called the additive identity in R .

Inverse: If a 2 R , then ¡a 2 R and a + (¡a) = (¡a) + a = 0.

Therefore each element of R has an inverse in R .

Therefore, fR , +g is a group, and is an example of an infinite group.

Since a + b = b + a for all a, b 2 R , fR , +g is an Abelian group.

Example 49

Example 48

Thus for each element a 2 Z 5 n f0g there is an inverse a¡1 2 Z 5 n f0g, for

the operation £5 with identity 1.

Therefore fZ 5 n f0g, £5g forms a group, since it satisfies all four group axioms.

Since the multiplication of integers is commutative, it follows that a £5 b = b £5 a for all

a, b 2 Z 5 n f0g. Therefore the group is Abelian.
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60 SETS, RELATIONS, AND GROUPS

EXERCISE E.1

1 The given Cayley table is for the operation ¤
on the set S = fe, a, b, c, dg.

a Show that:

i S is closed under ¤
ii there is an identity element for ¤ in S

iii each element of S has a unique inverse.

b How many different checks must be made to show that ¤ is associative?

¤ e a b c d

e e a b c d

a a e c d b

b b d e a c

c c b d e a

d d c a b e

2 Prove the left cancellation law:

Consider a group fG, ¤g. For all a, b, c 2 G, if a ¤ b = a ¤ c then b = c.

3 Determine, giving reasons, whether each of the following is a group. If it is, state whether the group

is Abelian.

a Q under multiplication. b Q n f0g under multiplication.

c The set of odd integers under multiplication. d f3n j n 2 Z g under multiplication.

e
n

1, ¡1
2 + i

p
3

2 , ¡1
2 ¡ i

p
3

2

o
under multiplication.

f f3n j n 2 Z g under addition. g f3n j n 2 Z g under multiplication.

h C under addition. i C under multiplication.

j fa + bi j a, b 2 R , ja + bij = 1g under multiplication.

k C n f0g under multiplication.

4 Let G = Q + with binary operation ¤ such that a ¤ b =
ab

4
for all a, b 2 Q +.

Show that fG, ¤g is a group.

5 Determine whether the following statement is true or false, giving reasons for your answer:

“If the Cayley table of a set G with closed binary operation ¤ is a Latin square, then fG, ¤g is a

group.”

6 a Verify that fZ 7 n f0g, £7g is a group, where £7 is multiplication modulo 7.

b Show that fZ 9 n f0g, £9g is not a group.

7 Let F be the set of real-valued functions on R , so F = ff j f : R ! R is a functiong.

Define addition in F by (f + g)(x) = f(x) + g(x), x 2 R .

Verify that fF , +g is a group.

8 Use the axioms of a group to prove each of the following:

a A group fG, ¤g has a unique identity element.

b In a group fG, ¤g, each element has a unique inverse.

9 Prove: If fG, ¤g is a group, then for any fixed elements a, b 2 G, the equations a ¤ x = b

and y ¤ a = b each have a unique solution in G.
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SETS, RELATIONS, AND GROUPS 61

10 Let S = R n f¡2g and define the binary operation ¤ on S by a ¤ b = a + b +
ab

2
.

a Verify that fS, ¤g is an Abelian group.

b Find the solution(s) in S to the equation:

i 2 ¤ x ¤ 5 = 11 ii x ¤ 3 ¤ 8 = 12.

11 Suppose G is a set with a binary operation ¤ such that:

1 ¤ is closed and associative in G.

2 G has a left identity element e, so for each a 2 G, e ¤ a = a.

3 Each element in G has a left inverse, so for each a 2 G there exists a ¡1
L 2 G such that

a ¡1
L ¤ a = e.

Prove that fG, ¤g is a group.

12 Suppose G is a set with a closed, associative binary operation ¤, and an identity element e.

Prove that if the Cayley table for G contains e once in every row and once in every column, then

fG, ¤g is a group.

13 Let S be the set of all subsets of a universal set U . Show that fS, ¢g is a group.

You may assume that the symmetric difference ¢ of sets is associative from Exercise D.2 question 5.

ORDER

In a group fG, ¤g where a 2 G, we define:

am = a ¤ a ¤ :::: ¤ a| {z }
m times

am is unique since ¤ is closed and associative in G.

We define a0 = e, where e is the identity in G.

The order of a group fG, ¤g is the number of elements in G, which is n(G) or jGj.
The order of an element a of a group fG, ¤g is the smallest positive integer m for which am = e,

where e is the identity in G. We write jaj = m to denote element a has finite order m. If no such

m 2 Z + exists, then element a has infinite order in fG, ¤g.

In any group, the order of the identity element is 1.

For example:

² In the group fZ 3, +3g, the identity is 0 and the element 2

has order 3 since:

21 = 2 6= 0

22 = 2 +3 2 = 1 6= 0

23 = 2 +3 2 +3 2 = 0, the identity

) 3 is the smallest positive integer such that 23 = e = 0.

am = a ¤ a ¤ :::: ¤ a| {z }
m times

where is in

this example.

¤ +3
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62 SETS, RELATIONS, AND GROUPS

² In the group fR , +g, the identity is 0 and the element 2 has

infinite order since:

21 = 2 6= 0

22 = 2 + 2 = 4 6= 0
...

2m = 2 + 2 + :::: + 2| {z }
m times

= 2m 6= 0 for all m 2 Z +

) there exists no m 2 Z + such that 2m = 2m = 0

) 2 has infinite order in fR , +g.

A finite group is a group with finite order, which is a group containing a finite number of elements.

An infinite group is a group with infinite order, which is a group containing an infinite number of

elements.

Theorem 7

In a finite group fG, ¤g, each element has finite order.

Proof:

If a 2 G, then a2, a3, a4, ...., am, .... 2 G for all m 2 Z +, since G is closed under ¤.

Since G is a finite group, this list of elements cannot be infinite. There must exist m1, m2 2 Z +

such that am1 = am2 .

Suppose m1 < m2 (without loss of generality). The inverse of a, element a¡1, exists since G is a

group. Multiplying am1 = am2 on the left by a¡1 m1 times,

a¡1 ¤ a¡1 ¤ :::: ¤ a¡1| {z }
m1 times

¤ am1 = a¡1 ¤ :::: ¤ a¡1| {z }
m1 times

¤ am2

fWe omit brackets since in a group ¤ is associativeg
) a¡1 ¤ a¡1 ¤ :::: ¤ a¡1| {z }

m1 ¡ 1 times

¤ a¡1 ¤ a| {z }
e

¤ a ¤ :::: ¤ a| {z }
m1 ¡ 1 times

= a¡1 ¤ :::: ¤ a¡1| {z }
m1 times

¤ a ¤ :::: ¤ a| {z }
m2 times

) a¡1 ¤ a¡1 ¤ :::: ¤ a¡1| {z }
m1 ¡ 1 times

¤ a ¤ :::: ¤ a| {z }
m1 ¡ 1 times

= a¡1 ¤ :::: ¤ a¡1| {z }
m1 ¡ 1 times

¤ (a¡1 ¤ a) ¤ a ¤ :::: ¤ a| {z }
m2 ¡ 1 times

...

) e = a ¤ :::: ¤ a| {z }
m2 ¡ m1 times

) e = am2¡m1 where m2 ¡ m1 2 Z +.

Hence the element a has finite order.

Theorem 8

Consider a group fG, ¤g with identity e. For any a 2 G:

1 (a¡1)¡1 = a

2 (an)¡1 = (a¡1)n

Take care to remember the

operation of the group.

fsince a¡1 ¤ a = eg

fsince m2 > m1g

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_02\062IB_HL_OPT-SRG_02.cdr Tuesday, 25 June 2013 12:41:25 PM BRIAN



Using group notation,

where is .

1 = 1 1 1 1
+

4 ¤ ¤ ¤
¤ 4

SETS, RELATIONS, AND GROUPS 63

Proof: 1 By definition of the inverse of a, a ¤ a¡1 = a¡1 ¤ a = e

) (a¡1)¡1 = a.

2 For any a 2 G, a¡1 2 G since G is a group.

Also an, (a¡1)n 2 G since ¤ is closed in G.

Consider (a¡1)n ¤ an = a¡1 ¤ a¡1 ¤ :::: ¤ a¡1| {z }
n times

¤ a ¤ :::: ¤ a| {z }
n times

= a¡1 ¤ a¡1 ¤ :::: ¤ a¡1| {z }
n ¡ 1 times

¤ e ¤ a ¤ :::: ¤ a| {z }
n ¡ 1 times

fassociativity and

a¡1 ¤ a = eg
...

= e

Similarly an ¤ (a¡1)n = e

) (an)¡1 = (a¡1)n

a Show that Z 4 = f0, 1, 2, 3g under the operation of +4, addition modulo 4, is a group.

b Is the group Abelian?

c State the order of each element of the group.

a The Cayley table is:

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Closure: For all a, b 2 Z 4, a +4 b 2 Z 4.

) Z 4 is closed under addition modulo 4.

Associative: Associativity follows from the associative

property of addition in Z .

Identity: For all a 2 Z 4, 0 +4 a = a +4 0 = a.

) since 0 2 Z 4, it is the identity element in

Z 4 for +4.

Inverse: From the table, 0 +4 0 = 0, 2 +4 2 = 0, and 1 +4 3 = 3 +4 1 = 0.

) each of 0 and 2 is its own inverse, while 1 and 3 are inverses of each other.

Therefore fZ 4, +4g is a group, since the four group axioms hold.

b From the symmetry of the Cayley table about the main diagonal, a + b = b + a for all

a, b 2 Z 4.

Therefore, fZ 4, +4g is an Abelian group.

c 0 is the identity which has order 1.

1 has order 4, since 11, 12, 13 6´ 0 (mod 4)

whereas 14 = 1 +4 1 +4 1 +4 1 = 0.

2 has order 2, since 21 6´ 0 (mod4)

whereas 22 = 2 +4 2 = 0.

3 has order 4, since 31, 32, 33 6´ 0 (mod 4)

whereas 34 = 3 +4 3 +4 3 +4 3 = 0.

Example 50
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64 SETS, RELATIONS, AND GROUPS

Let ® = 1
2 + i

p
3

2
and let G = f®n j n 2 Z +g.

a Show that G is an Abelian group under multiplication in C and construct the Cayley table.

b What is the order of G?

c Find the order of:

i ® ii ®2 iii ®3 iv ®4.

Notice that ® = 1
2 + i

p
3

2
= cis

¡
¼
3

¢
®2 = cis

¡
2¼
3

¢
®3 = cis

¡
3¼
3

¢
= cis(¼) = ¡1

®4 = cis
¡
4¼
3

¢
®5 = cis

¡
5¼
3

¢
®6 = cis (2¼) = 1

®7 = cis
¡
7¼
3

¢
= cis

¡
¼
3

¢
= ®

®8 = ®2, and so on.

) G = f®, ®2, ®3 = ¡1, ®4, ®5, ®6 = 1g is the set of six sixth roots of unity in C .

a £ 1 ® ®2 ®3 ®4 ®5

1 1 ® ®2 ®3 ®4 ®5

® ® ®2 ®3 ®4 ®5 1

®2 ®2 ®3 ®4 ®5 1 ®

®3 ®3 ®4 ®5 1 ® ®2

®4 ®4 ®5 1 ® ®2 ®3

®5 ®5 1 ® ®2 ®3 ®4

Closure: Each element in the table is in G
) a £ b 2 G for all a, b 2 G.

Associative: Multiplication is associative in C
) it is associative in G.

Identity: The element 1 2 G is the identity,

since 1 £ ®i = ®i £ 1 = ®i for

all i = 1, ...., 6.

Inverse: Since ®6 = 1 from the table, we obtain:

(®)¡1 = ®5, (®2)¡1 = ®4, (®3)¡1 = ®3, (®4)¡1 = ®2,

(®5)¡1 = ®, 1¡1 = 1

Hence fG, £g is a group.

Since £ is commutative in C , fG, £g is commutative in G, and G is therefore an Abelian

group.

b G has 6 elements, so G has order 6.

c i From above, m = 6 is the smallest positive integer such that ®m = 1
) ® has order 6

ii ®2 6= 1, (®2)2 = ®4 6= 1, and (®2)3 = ®6 = 1

) ®2 has order 3

iii ®3 6= 1 and (®3)2 = ®6 = 1

) ®3 has order 2

iv ®4 6= 1, (®4)2 = ®8 = ®6®2 = 1 £ ®2 = ®2 6= 1, and

(®4)3 = ®12 = (®6)2 = 12 = 1

) ®4 has order 3

Example 51

By De Moivre’s theorem:
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EXERCISE E.2

1 Let G = f2, 4, 6, 8g under the binary operation ¤, where ¤ denotes multiplication modulo 10.

a Write down the Cayley table for fG, ¤g. b Does fG, ¤g have an identity element?

c Show that fG, ¤g is a group. d Find the order of each element in G.

e Find all solution pairs (x, y) where x, y 2 G, to the equation y = 2 ¤ x ¤ 4.

2 Let A = f1, 3, 5, 7g under the binary operation ¤, where ¤ denotes multiplication modulo 8.

a Verify that fA, ¤g is a group. b Is the group Abelian?

c Find the order of each element in fA, ¤g.

d Let H = f1, 3g. Verify that fH, ¤g is a group.

3 a For n 2 Z + any fixed positive integer, let Un = f® j ®n = 1, ® 2 C g be the nth roots of

unity in C . Verify that fUn, £g is a group under multiplication in C .

b Write down the elements of U4.

c State the order of each element in U4.

4 Let fG, ¤g be a group with identity e, and suppose x 2 G has finite order m.

Prove that xn = e , n is a multiple of m.

5 Let g, f 2 G be elements of the group fG, ¤g. Show that:

a g has finite order , g¡1 has finite order

b jgj =
¯̄
g¡1

¯̄
, which means g and g¡1 have the same order

c if jfgj = m 2 Z + then jgf j = m.

SETS, RELATIONS, AND GROUPS 65
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GROUPS OF ORDER n = 1, 2, 3, OR 4INVESTIGATION

66 SETS, RELATIONS, AND GROUPS

We can use the definition of a group and our established properties of groups to construct groups

of order 1, 2, 3, and 4. By doing this we investigate for each order how many such structures are

possible.

Case n = 1

Consider a group fG, ¤g for which jGj = 1 and the identity element is e. Since e is the only

element of G, G = feg.

1 Construct a Cayley table for the binary operation ¤.

2 Show that ¤ is associative and that e is its own unique inverse.

3 Explain why each of the following is a group of order 1:

a ff1g, £g b ff0g, +g c ff6g, £10g

Case n = 2

Consider a group fG, ¤g for which jGj = 2 and the identity element is e. Since jGj = 2, there

exists an element a 2 G such that a 6= e.

1 Show that the Cayley table for any such group G must be ¤ e a

e e a
a a e

2 Show that ¤ is associative.

3 Show that each element in G has a unique inverse.

4 Explain why each of the following is a group of order 2:

a fZ 2, +2g = ff0, 1g, +2g
b fZ 3 nf0g, £3g = ff1, 2g, £3g

Case n = 3

Consider a group fG, ¤g for which jGj = 3 and the identity element is

e. Suppose the other distinct elements are a and b, so G = fe, a, bg.

1 Since ¤ is closed in a group, the Cayley table for this group is a Latin

square with elements e, a, and b. Thus each row and column must

contain e, a, b each exactly once. Remembering that e is the identity

element, show that there is only one possible Cayley table.

2 Verify that:

a a2 = a ¤ a = b b b2 = b ¤ b = a

c a ¤ b = a3 = e d b ¤ a = b3 = e

3 Find the inverse of each element in G.

4 Explain why fZ 3, +3g = ff0, 1, 2g, +3g is a group of order 3.

These groups are different but they have the

same as determined by the Cayley

table. We say the groups are .

structure

isomorphic

All groups of order

are isomorphic.

3
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SETS, RELATIONS, AND GROUPS 67

Case n = 4

Consider a group fG, ¤g for which jGj = 4, the identity element is e, and G = fe, a, b, cg.

1 Remembering that each row and column must contain e, a, b, and c each exactly once, show

that there are two possible structures for the Cayley table:

² ¤ e a b c

e e a b c

a a b c e

b b c e a

c c e a b

which corresponds to the cyclic group of order 4

generated by a, fG, ¤g = ffe, a, a2, a3g, ¤g.

² ¤ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

which corresponds to the Klein 4-group

fV4, ¤g = ffe, a, b, c j a2 = b2 = c2 = eg, ¤g.

2 Show that the Cayley table ¤ e a b c

e e a b c

a a c e b

b b e c a

c c b a e

can be rewritten as the cyclic group of order 4 by relabelling the elements.

3 State the order of each element in:

a the cyclic group of order 4

b the Klein 4-group.

4 Show that:

a ff1, 2, 3, 4g, +4g is a cyclic group of order 4

b ff1, 3, 5, 7g, £8g is a Klein 4-group

c ff2, 4, 6, 8g, £10g is a cyclic group of order 4.

For finite groups of order n > 5, there are often many essentially different possible structures and

it becomes unwieldy to consider the different possible Cayley tables. We will instead investigate the

different possible group structures using isomorphisms later in the course.

Since the orders of the elements

in these groups are different, the

groups are isomorphic.not
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68 SETS, RELATIONS, AND GROUPS

A permutation is a bijection from a non-empty set to itself.

For example, consider the illustrated mapping of f : S ! S

where S = f1, 2, 3, 4g.

We observe that: f : 1 7! f(1) = 2

f : 2 7! f(2) = 3

f : 3 7! f(3) = 4

f : 4 7! f(4) = 1

The ordered pairs of the bijection are f(1, 2), (2, 3), (3, 4), (4, 1)g, and the permutation is also

commonly written as:

pa =

Ã
1 2 3 4

f(1) f(2) f(3) f(4)

!
=

µ
1 2 3 4

2 3 4 1

¶

More generally, a permutation p of the elements of S = f1, 2, 3, ...., ng, n 2 Z +, is a bijection

f : S ! S which we write as p =

Ã
1 2 3 :::: n

f(1) f(2) f(3) :::: f(n)

!
.

A permutation can be viewed as a particular arrangement of the elements in a set.

Let Sn be the set of all permutations of the n distinct elements 1, 2, 3, ...., n, where n 2 Z +.

Since there are n! possible arrangements of n distinct elements, there are n! distinct permutations in Sn.

We write jSnj = n!.

COMPOSITION OF PERMUTATIONS

The composition of two permutations is also called combining, multiplying, or finding the product.

Let two permutations on S = f1, 2, 3, 4g be pa =

µ
1 2 3 4

2 3 4 1

¶
and pb =

µ
1 2 3 4

3 1 2 4

¶
.

Consider the composition of functions where pa is followed by pb, as shown in the diagram:

By following the arrows through, we find the resulting permutation

pbpa =

µ
1 2 3 4

1 2 4 3

¶
pbpa can also be found by writing the combined permutation in the order

PERMUTATION GROUPSF

µ
1 2 3 4

3 1 2 4

¶µ
1 2 3 4

2 3 4 1

¶
=

µ
1 2 3 4
1 2 4 3

¶
= pbpa

1

2

3

4

S S
1

2

3

4

1

2

3

4

S

S
1

2

3

4

S
1

2

3

4

pa pb

Remember that followed

by is written since

we work from right to left.

p
p p p

a

b b a
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SETS, RELATIONS, AND GROUPS 69

Note that we work from right to left when combining permutations. This is consistent with compositions

of functions:

(pbpa)(x) = pb(pa(x)) = pb ± pa(x)

However, not all texts follow this convention.

Composition of functions is, in general, not commutative, and this is therefore also the case for

composition of permutations.

For example: papb =

µ
1 2 3 4

2 3 4 1

¶µ
1 2 3 4

3 1 2 4

¶

=

µ
1 2 3 4

4 2 3 1

¶
6= pbpa

However, the composition of bijective functions of the form f : S ! S is associative (see Example 48),

so the process of composition of permutations can be used for more than two permutations.

For example:

p4p3p2p1 =

µ
. 2 . .

. 3 . .

¶µ
. . . 4

. . . 2

¶µ
. 2 .

. 4 .

¶µ
1 . . .

2 . . .

¶
=

µ
1 . . .

3 . . .

¶

IDENTITY

The identity permutation in Sn is e =

µ
1 2 3 :::: n

1 2 3 :::: n

¶
, and ep = pe = p for any

permutation p 2 Sn.

INVERSES

Intuitively, if n distinct objects can be rearranged by a permutation, then they can be put back in their

original order by a corresponding inverse permutation.

Formally, since each permutation p is a bijection f : S ! S on S = f1, 2, ...., ng, n 2 Z +, there

exists an inverse bijection f¡1 : S ! S such that f ± f¡1 = f¡1 ± f = e in the group of bijections

on S under composition of functions (see Example 48).

The permutation p =

Ã
1 2 3 :::: n

f(1) f(2) f(3) :::: f(n)

!
has inverse permutation

p¡1 =

Ã
1 2 3 :::: n

f¡1(1) f¡1(2) f¡1(3) :::: f¡1(n)

!

such that pp¡1 = p¡1p = e, the identity permutation in Sn.

This process generalises for permutations in Sn. If we rearrange n distinct elements and then rearrange

them again, the result is another arrangement of the same original n elements. It follows that Sn is

closed under the binary and associative operation of composition of permutations.
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70 SETS, RELATIONS, AND GROUPS

For a given permutation p =

Ã
1 2 3 :::: n

f(1) f(2) f(3) :::: f(n)

!
,

we find p¡1 by writing p¡1 =

Ã
f(1) f(2) :::: f(n)

1 2 :::: n

!
and then rearranging the columns in p¡1 so that the top row is in ascending order.

For example, in S4 let p =

µ
1 2 3 4

3 1 4 2

¶
:

) p¡1 =

µ
3 1 4 2

1 2 3 4

¶
fswap rows in pg

=

µ
1 2 3 4

2 4 1 3

¶ frearrange the columns to obtain

1 2 3 4 in the top rowg

On checking, pp¡1 =

µ
1 2 3 4

3 1 4 2

¶µ
1 2 3 4

2 4 1 3

¶
= e

and p¡1p =

µ
1 2 3 4

2 4 1 3

¶µ
1 2 3 4

3 1 4 2

¶
= e

We have verified the axioms of a group, so we are now able to state:

Theorem 9

The set Sn of all permutations of the n distinct elements f1, 2, ...., ng, n 2 Z +, is a group of order

n! under the operation of composition of permutations.

We can also define:

For n 2 Z +, Sn is called the symmetric group of degree n.

Note that S4 is not an Abelian group, since we showed above papb 6= pbpa for the given permutations

pa, pb 2 S4.

Consider the symmetric group of degree 3, which is the set S3 of all possible permutations on

S = f1, 2, 3g.

a Find all elements of S3.

b Show, by direct verification of the group axioms, that S3 is a group under composition of

permutations.

c Is S3 Abelian?

a We know that there are 3! = 6 different permutations in S3.

The identity e =

µ
1 2 3
1 2 3

¶
.

Letting ® =

µ
1 2 3
2 3 1

¶
, we find ®2 =

µ
1 2 3
2 3 1

¶µ
1 2 3
2 3 1

¶
=

µ
1 2 3
3 1 2

¶
which is another permutation. We notice that ®®2 = e and ®2® = e.

Example 52
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SETS, RELATIONS, AND GROUPS 71

Letting ¯ =

µ
1 2 3
1 3 2

¶
, we find ¯2 = e.

Letting ° =

µ
1 2 3
3 2 1

¶
, we find °2 = e.

Letting ± =

µ
1 2 3
2 1 3

¶
, we find ±2 = e.

So, the six permutations on S are e, ®, ®2, ¯, °, and ±.

b ®¯ =

µ
1 2 3
2 3 1

¶µ
1 2 3
1 3 2

¶
=

µ
1 2 3
2 1 3

¶
= ±

®° =

µ
1 2 3
2 3 1

¶µ
1 2 3
3 2 1

¶
=

µ
1 2 3
1 3 2

¶
= ¯

®± =

µ
1 2 3
2 3 1

¶µ
1 2 3
2 1 3

¶
=

µ
1 2 3
3 2 1

¶
= °

Continuing in this way enables us to construct the Cayley table for the composition of

permutations in S3:

¤ e ® ®2 ¯ ° ±

e e ® ®2 ¯ ° ±

® ® ®2 e ± ¯ °

®2 ®2 e ® ° ± ¯

¯ ¯ ° ± e ® ®2

° ° ± ¯ ®2 e ®

± ± ¯ ° ® ®2 e

Closure: For all a, b 2 S3, a ¤ b 2 S3.

Therefore S3 is closed under the

operation.

Associative: Composition of functions is an

associative operation, so the

composition of permutations on S
is also associative.

Identity: From the table, a ¤ e = e ¤ a = a for all a 2 S3.

) e is indeed the identity element in S3 for ¤.

Inverse: e is its own inverse.

®®2 = ®2® = e so ®¡1 = ®2 and (®2)¡1 = ®

¯2 = e so ¯¡1 = ¯

°2 = e so °¡1 = °

±2 = e so ±¡1 = ±

Hence each element in S3 has an inverse in S3.

We have directly verified the group axioms

) fS3, ¤g is a group.

c The Cayley table is not symmetric about the main diagonal.

For example, ¯®2 = ± but ®2¯ = ° 6= ±.

) S3 is not an Abelian group.

Consistent with our previous definition of order of an element, we define:

The order m of a permutation p 2 Sn is the least positive integer m such that

pm = ppp::::p| {z }
m times

= e, the identity permutation in Sn.
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EXERCISE F.1

1 Simplify the following compositions of permutations:

a

µ
1 2 3 4
1 4 2 3

¶µ
1 2 3 4
4 2 3 1

¶
b

µ
1 2 3 4
2 3 1 4

¶µ
1 2 3 4
4 3 1 2

¶

c

µ
1 2 3 4
2 1 4 3

¶µ
1 2 3 4
2 1 4 3

¶
d

µ
1 2 3 4
3 4 1 2

¶µ
1 2 3 4
2 3 1 4

¶µ
1 2 3 4
4 1 2 3

¶
2 Find:

a

µ
1 2 3 4
3 1 4 2

¶¡1

b

µ
1 2 3 4
2 1 4 3

¶¡1

c

·µ
1 2 3 4
3 4 2 1

¶µ
1 2 3 4
2 4 1 3

¶¸ ¡1

3 Prove that for all permutations p, q 2 Sn, n 2 Z +, (qp)¡1 = p¡1q¡1.

4 Find permutation p on f1, 2, 3, 4g such that:

a p

µ
1 2 3 4
3 1 2 4

¶
=

µ
1 2 3 4
2 1 4 3

¶
b p

µ
1 2 3 4
2 3 1 4

¶
=

µ
1 2 3 4
2 4 1 3

¶
5 For each of the following, construct a Cayley table and determine whether the set of permutations

is a group under composition of permutations.

a fA, B, C, Dg where A =

µ
1 2 3 4
1 2 3 4

¶
, B =

µ
1 2 3 4
2 3 4 1

¶
,

C =

µ
1 2 3 4
3 4 1 2

¶
, D =

µ
1 2 3 4
4 1 2 3

¶

b fA, B, C, Dg where A =

µ
1 2 3 4
1 2 3 4

¶
, B =

µ
1 2 3 4
2 1 4 3

¶
,

C =

µ
1 2 3 4
3 4 1 2

¶
, D =

µ
1 2 3 4
4 3 2 1

¶
.

6 Find the order of each permutation:

a p =

µ
1 2 3 4
4 3 2 1

¶
b q =

µ
1 2 3 4
4 1 3 2

¶
c r =

µ
1 2 3 4 5
4 5 1 3 2

¶

d e =

µ
1 2 3 4
1 2 3 4

¶
e s =

µ
1 2 3 4
4 1 2 3

¶
7 Consider the symmetric group of degree 4, which is the set S4 of all possible permutations on

S = f1, 2, 3, 4g. Find all elements of S4.

8 Consider the symmetric group of degree 2, which is the set S2 of all possible permutations on

S = f1, 2g.

a Find all elements of S2.

b Show, by direct verification of the group axioms, that S2 is a group under composition of

permutations.

c Is S2 Abelian? Explain your answer.
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SETS, RELATIONS, AND GROUPS 73

CYCLE NOTATION FOR PERMUTATIONS

If p =

µ
1 2 3 4
3 1 4 2

¶
then permutation p maps 1 to 3, 3 to 4, 4 to 2, and 2 to 1

p : 1 7! 3 7! 4 7! 2

The cycle notation for this permutation is p = (1 3 4 2).

Note that the cycle notation (3 4 2 1) represents the same permutation p.

Similarly, q =

µ
1 2 3 4 5
4 3 2 5 1

¶
in S5 maps 1 to 4, 4 to 5, 5 to 1, 2 to 3, and 3 to 2.

q : 1 7! 4 7! 5 and 2 7! 3

) we write q = (1 4 5)(2 3) in cycle notation.

If r =

µ
1 2 3 4 5
1 4 3 5 2

¶
then we write r = (1)(2 4 5)(3)

or r = (2 4 5) fwe omit the terms (1) and (3)g
in cycle notation.

A cycle (a1a2::::ar) has r distinct elements and is said to have length r, where r 2 Z +.

If two cycles have no elements in common, they are called disjoint cycles.

For the three permutations p, q, r given above, we have:

p is a cycle of length 4.

q is the product (or composition) of two disjoint cycles, one of length 3 and one of length 2.

r is a cycle of length 3.

Clearly every cycle is a permutation, but not every permutation is a cycle. For example, q is not a cycle.

COMPOSITION OF PERMUTATIONS (USING CYCLE NOTATION)

Theorem 10

Every permutation p 2 Sn, n 2 Z +, can be written as the composition of disjoint cycles.

For q = (1 4 5)(2 3) and r = (2 4 5), the permutation qr is the result of performing permutation r

followed by permutation q.

qr = (1 4 5)(2 3)(2 4 5) but this is not yet in simplest form.

Since the first permutation is the one furthest to the right, we work from right to left to trace the mapping

of each element, starting with 1.

(1 4 5)(2 3)(2 4 5)

Ã¡¡¡¡¡¡¡¡¡¡¡¡¡
1 maps to 4

so we write qr = (1 4 ::::
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74 SETS, RELATIONS, AND GROUPS

Again working from right to left, we trace the mapping of element 4:

(1 4 5)(2 3)(2 4 5)

Ã¡¡¡¡
4 maps to 5

Ã¡¡¡¡¡¡¡¡¡¡¡
then 5 is mapped to 1

Thus 4 is mapped back to 1, so we have qr = (1 4) .... .

We consider the remaining elements in the same way, and obtain:

2 maps to 4 maps to 5, so 2 7! 5

5 maps to 2 maps to 3, so 5 7! 3

3 maps to 2, so 3 7! 2

) qr = (1 4)(2 5 3) in cycle notation, in simplest form.

We can check the result using permutation notation: qr =

µ
1 2 3 4 5
4 3 2 5 1

¶µ
1 2 3 4 5
1 4 3 5 2

¶

=

µ
1 2 3 4 5
4 5 2 1 3

¶
= (1 4)(2 5 3) in cycle notation

Theorem 11

Disjoint cycles commute, so for disjoint cycles c1, c2, ...., cm,

(c1c2::::cm)n = c n
1 c n

2 :::: c n
m.

For example, ((1 4)(2 5 3))2 = (1 4)2(2 5 3)2.

Theorem 12

Proof:

1 If p = (a1a2::::ar) then p(a1) = a2 in function notation, since p is a bijection.

) p2(a1) = p(p(a1)) = p(a2) = a3
...

) pr¡1(a1) = ar

) pr(a1) = p(pr¡1(a1)) = p(ar) = a1

Since the elements of a cycle are distinct, r is the least positive integer for which pr(a1) = a1.

On checking, pr(ai) = ai for all i = 1, ...., r also.

) pr = ppp::::p| {z }
r times

= e, the identity permutation, and r 2 Z + is the least positive integer for

which this is true.

) p has order r.

1 A cycle (a1a2::::ar) of length r is a permutation of order r.

2 The inverse permutation (a1a2::::ar)
¡1 has order r, and (a1a2::::ar)

¡1 = (arar¡1::::a1).

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_03\074IB_HL_OPT-SRG_03.cdr Thursday, 15 August 2013 3:49:25 PM BRIAN



SETS, RELATIONS, AND GROUPS 75

2 Consider (a1a2::::ar)(ar::::a2a1)

= (a1)(a2)(a3) :::: (ar)

= e

Similarly, (ar::::a2a1)(a1a2::::ar)

= (a1)(a2) :::: (ar)

= e

) (a1a2::::ar)
¡1 = (arar¡1::::a1)

Find, by direct calculation of the powers of each permutation, the order of each permutation.

a p = (1 2 3) b q = (2 3)(1 4 5) c r = (1 2 3)(1 4 5)

a Let p = (1 2 3)

) p2 = (1 2 3)(1 2 3) = (1 3 2)

and p3 = p2p = (1 3 2)(1 2 3) = (1)(2)(3) = e

) p has order 3, as expected since p is a cycle of length 3.

b Let q = (2 3)(1 4 5)

) q2 = (2 3)(1 4 5)(2 3)(1 4 5)

= (1 5 4)(2)(3)

= (1 5 4)

q3 = q2q = (1 5 4)(2 3)(1 4 5)

= (1)(2 3)(4)(5)

= (2 3)

q4 = q3q = (2 3)(2 3)(1 4 5)

= (1 4 5)(2)(3)

= (1 4 5)

q5 = q4q = (1 4 5)(2 3)(1 4 5)

= (1 5 4)(2 3)

and q6 = q5q = (1 5 4)(2 3)(2 3)(1 4 5)

= (1)(2)(3)(4)(5)

= e

) q has order 6.

c r = (1 2 3)(1 4 5) is not a product of disjoint cycles, and in fact r = (1 4 5 2 3) in simplest

form.

) r is a cycle of length 5.

r2 = (1 4 5 2 3)(1 4 5 2 3)

= (1 5 3 4 2)

r3 = r2r

= (1 5 3 4 2)(1 4 5 2 3)

= (1 2 4 3 5)

r4 = r3r

= (1 2 4 3 5)(1 4 5 2 3)

= (1 3 2 5 4)

r5 = r4r

= (1 3 2 5 4)(1 4 5 2 3)

= (1)(2)(3)(4)(5)

= e

) r has order 5, as expected.

Theorem 13

If a permutation p = c1c2::::cm is the composition of m disjoint cycles c1, c2, ...., cm of lengths

r1, r2, ...., rm respectively, then the order of p equals the lowest common multiple of r1, r2, ....,

and rm.

Example 53

1), which has length r and ) by 1 has order r.
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76 SETS, RELATIONS, AND GROUPS

Proof:

Each cycle ci has length ri

) ci has order ri.

) ri is the smallest positive integer for which c ri
i = e, and c n

i = e if and only if n is a

multiple of ri.

It follows that pn = e

, (c1c2::::cm)n = e

, c n
1 c n

2 ::::c n
m = e fsince disjoint cycles commuteg

, c n
1 = e, c n

2 = e, ...., and c n
m = e fsince the cycles are disjoint, none

can be the inverse of any otherg
, n is a multiple of r1, r2, ...., and rm.

Thus the order of p is the lowest common multiple of r1, r2, ...., and rm.

For example, q = (2 3)(1 4 5) is the product of disjoint cycles of length 2 and 3

) the order of q is the lowest common multiple of 2 and 3, which is 6.

EXERCISE F.2

1 Write each permutation in cycle notation:

a

µ
1 2 3 4
4 1 2 3

¶
b

µ
1 2 3 4 5 6
6 5 2 1 3 4

¶
c

µ
1 2 3 4 5
5 3 2 4 1

¶

d

µ
1 2 3 4 5 6
6 3 1 5 4 2

¶
e

µ
1 2 3 4 5
3 2 1 4 5

¶
f

µ
1 2 3 4 5 6
1 3 5 6 2 4

¶

g

µ
1 2 3 4 5 6
6 4 5 2 3 1

¶
2 Write each permutation in cycle notation in simplest form.

a (1 2 3 4)(1 5) b (1 3)(1 2)(1 5) c (1 2 3)(1 4 2 3)

d (1 6)(1 5)(1 4)(1 3)(1 2)

3 In cycle notation, find the inverse of each permutation.

a (1 3 2 4 5) b (1 3 2)(4 5) c (1 3)(2 4 5)

d (1 2 3)(1 4 5) e (1 3)(1 4)(1 5) f (1 2 3)(1 5)

4 Let p = (1 3 2 4) and q = (1 2 3 5). Find, in simplest form:

a p¡1 b q¡1 c (pq)¡1 d q¡1pq e p¡2q¡1

f the permutation r such that pr¡1 = q

5 Find, by direct calculation of the powers of each permutation, the order of each permutation:

a (1 4 3 2) b (1 2)(1 3 4) c (1 2 3)(2 3 4)

6 Find the order of each permutation given in 2.

7 Let p = (1 3 2 4) and let G = fe, p, p2, p3g, where e is the permutation

µ
1 2 3 4
1 2 3 4

¶
.

a Prove that G forms a group under composition of permutations.

b Let q = p2. Find the permutations:

i q ii p159 iii q159 iv p508
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SETS, RELATIONS, AND GROUPS 77

8 State the order of each permutation.

a (1 2 3)(4 5 6 7)(8 9 10 11 12) b (1 2)(3 4 5 6)(7 8 9 10 11)

c (1 2)(3 4 5 6)(7 8 9 10 11 12 13 14) d (1 2 3 4 5 6 7)(8 9 10)(11 12 13 14 15 16)

SYMMETRIES OF PLANE FIGURES

Certain plane figures have lines of symmetry and rotational symmetries. By labelling the vertices of a

plane figure f1, 2, 3, ...., ng, n 2 Z +, and then performing a (symmetric) reflection or rotation, we

obtain a permutation p on f1, 2, ...., ng where p(i) = j if and only if vertex i is mapped to the

original position of vertex j.

Sets of symmetries obtained in this way give rise to important examples of groups.

For example, we now consider the symmetries of an equilateral triangle, which give rise to the dihedral

group of degree 3.

The equilateral triangle shown has centroid O. Lines L1, L2, and L3

contain the three medians of the triangle through the vertices labelled

1, 2, and 3 respectively.

There are six transformations in the plane which map the equilateral

triangle onto itself.

There are three rotations:

² e an anti-clockwise rotation through 0± about O. This is the

identity or “do nothing” transformation.

² r an anti-clockwise rotation through 120± about O.

r corresponds to the permutation

µ
1 2 3
2 3 1

¶
or

(1 2 3) in cycle notation.

² r2 an anti-clockwise rotation through 240± about O. This is

equivalent to two successive applications of r, which is,

r ¤ r or r2.

r2 corresponds to the permutation

µ
1 2 3
3 1 2

¶
or

(1 3 2) in cycle notation.

Note that r3 = e is a rotation through 360± which maps every point to itself.

There are also three reflections:

² x a reflection in the line L1 and corresponds to

µ
1 2 3
1 3 2

¶
or (2 3).

DEMO

1

3 2

O

L1

L2 L3

2

3 1

O

L1

L2 L3

3

1 2

O

L1

L2 L3

1

2 3

O

L1

L2 L3
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78 SETS, RELATIONS, AND GROUPS

Since x, y, and z are reflections, x2 = y2 = z2 = e.

Let D3 = fe, r, r2, x, y, zg.

The Cayley table for D3 under the operation ¤ of combination of transformations, or equivalently the

composition of the corresponding permutations, is:

¤ e r r2 x y z

e e r r2 x y z

r r r2 e z x y

r2 r2 e r y z x

x x y z e r r2

y y z x r2 e r

z z x y r r2 e

For example, r ¤ x is a reflection in L1 followed by an

anti-clockwise rotation through 120±. The result is z.

Using a cut-out copy of the triangle may help with recognition

of geometric transformations.

Closure: The Cayley table shows that a ¤ b 2 D3 for all a, b 2 D3.

Therefore D3 is closed under ¤.

Associative: Transformations in the plane can be considered as bijections on R 2.

Therefore, since composition of bijective functions on a set is associative, composition

of transformations is also associative.

Identity: It can be seen from the table that a ¤ e = e ¤ a = a for all a 2 D3.

Therefore, since e 2 D3, it is the identity element for ¤ in D3.

Inverse: Since e appears once in every row and column, and ¤ is associative, every element has

a unique inverse.

Therefore fD3, ¤g forms a group.

This group is referred to as the dihedral group of degree 3, fD3, ¤g or just D3. We notice by

comparison with Example 52 that S3 and D3 have the same structure.

² y a reflection in the line L2 and corresponds to

µ
1 2 3
3 2 1

¶
or (1 3).

² z a reflection in the line L3 and corresponds to

µ
1 2 3
2 1 3

¶
or (1 2). 2

1 3

O

L1

L2 L3

3

2 1

O

L1

L2 L3
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SETS, RELATIONS, AND GROUPS 79

The set Dn of all symmetries (symmetry transformations) of a regular n-sided polygon in the plane

forms a group called the dihedral group of degree n.

For example, the dihedral group D4 is the group of symmetries of a square.

EXERCISE F.3

1 Label the vertices of a square 1, 2, 3, and 4.

a State the order of rotational symmetry of the square.

b How many lines of symmetry does the square have?

c Write down each symmetry of the square as a permutation

in cycle notation.

d Calculate the order of each permutation in c.

e What is the order of the dihedral group D4?

f What is the order of S4?

2 Label the vertices of a rectangle (which is not a square) 1, 2, 3, and 4.

a List the four symmetries of the rectangle as permutations in cycle notation.

b Calculate the order of each permutation in a.

c Verify that the set of permutations in a forms a group under composition of permutations.

d Is this group Abelian? Explain your answer.

3 Label the vertices of a regular pentagon 1, 2, 3, 4, and 5.

a Write down each symmetry of the regular pentagon as a permutation in cycle notation.

b Calculate the order of each permutation in a.

c What is the order of D5? d What is the order of S5?

4 Prove or disprove (as appropriate) the statement:

“For n 2 Z +, n > 3, the symmetric group Sn contains more elements than the dihedral group Dn”.

1 2

34

1 2

34

1

2

34

5
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80 SETS, RELATIONS, AND GROUPS

Consider the group fG, ¤g = fZ 6, +6g of integers modulo 6 under the operation +6, addition modulo 6.

The Cayley table for G is: +6 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Consider the subsets H1 = f3, 0g, H2 = f0, 2, 4g of Z 6.

It can be shown fH1, +6g and fH2, +6g are groups. Their Cayley tables are:

H1: +6 0 3

0 0 3

3 3 0

and H2: +6 0 2 4

0 0 2 4

2 2 4 0

4 4 0 2

We say that fH1, +6g and fH2, +6g are subgroups of fZ 6, +6g.

Given a group fG, ¤g, if H µ G is

1 a non-empty subset of G and

2 fH, ¤g is a group,

then fH, ¤g is called a subgroup of fG, ¤g.

We write H < G to denote that H is a subgroup of G.

Any group fG, ¤g is a subgroup of itself, and if e is the identity in G, then ffeg, ¤g is a subgroup

of G. These two groups are called the trivial subgroups of the group G.

Any subgroup fH, ¤g of a group fG, ¤g which is not a trivial subgroup is called a proper subgroup

of G.

Some examples of subgroups are:

² the nested subgroups fZ , +g < fQ , +g < fR , +g < fC , +g
² fQ +, £g < fR +, £g, both of which are infinite groups

² ff1, i, ¡i, ¡1g, £g < fC n f0g, £g which is a finite subgroup of an infinite group.

Consider again fZ 6, +6g and subgroups fH1, +6g and fH2, +6g defined above.

Notice that 3 +6 3 = 0, therefore in group notation, 3 +6 3 = 32 = 0.

Also, 2 +6 2 = 4 and 2 +6 2 +6 2 = 0

) 22 = 4 ) 23 = 0.

Hence we can write H1 = f3, 32 = 0g = f3n j n 2 Z g
and H2 = f2, 22, 23 = 0g = f2n j n 2 Z g

where 0 is the identity in fZ 6, +6g.

SUBGROUPSG

Be careful to remember

the group operation.
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Theorem 14

Let fG, ¤g be any group with identity e. For any element a 2 G, the subset H = fan j n 2 Z g
of G, where a0 = e and a¡n = (a¡1)n for n 2 Z +, forms a subgroup fH, ¤g of fG, ¤g.

Proof:

Firstly, a1 = a 2 H ) H is non-empty.

For ap, aq 2 H, ap ¤ aq = ap+q 2 H fsince p + q 2 Z g
) ¤ is closed in H.

Since ¤ is closed in G, an = a ¤ a ¤ :::: ¤ a 2 H \ G for all n 2 Z +.

For n = 0, a0 = e 2 H \ G, so H contains the identity.

For n = ¡1, a¡1 2 H \ G and a¡n = (a¡1)n 2 H \ G for n 2 Z +.

Thus all elements of H are elements of G.

) H µ G, e 2 H, and each element an 2 H has inverse (a¡1)n = a¡n 2 H.

Since ¤ is associative in G, ¤ is associative in H µ G.

Thus H is a group, and so H < G.

Corollary: If fG, ¤g is a group with identity e, and a 2 G, the subgroup

H = fan j n 2 Z g = fa0 = e, a, a2, a3, ...., a¡1, a¡2, a¡3, ....g
= fe, a, a2, a3, ...., a¡1, (a¡1)2, (a¡1)3, ....g

of G is the smallest subgroup of G which contains element a.

Proof:

By Theorem 14, H contains a and H < G.

Suppose H0 is a subgroup of G, and that a 2 H0.

) fH0, ¤g is a group

) H 0 is closed under ¤, and a¡1 2 H0.

) (a¡1)n = a¡n, an 2 H0 for all n 2 Z + fH 0 is closed under ¤g
and aa¡1 = e 2 H0 fH0 is closed under ¤g

) H µ H 0.

But fH, +g is a group, so H < H 0.

Consider a subset H of a group fG, ¤g. From the definition of a subgroup, to determine whether H is

a subgroup of G we need to verify if

1 H is non-empty, and

2 fH , ¤g is a group.

The following theorems concerning subgroups provide quicker methods, in some cases, for determining

whether or not a subset of a group is in fact a subgroup.
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82 SETS, RELATIONS, AND GROUPS

Theorem 15 (The subgroup test)

Consider a non-empty subset H of a group fG, ¤g. If a ¤ b¡1 2 H for all a, b 2 H , then fH, ¤g
is a subgroup of fG, ¤g.

Proof:

If we prove that H is a group, then since H µ G, this will give us H < G.

Associative: ¤ is associative in G

) ¤ is associative in H µ G.

Identity: Let e denote the identity in G.

Since H is non-empty, it contains an element a.

If a = e, then e 2 H .

If a 6= e, then letting b = a we have, by the given property of H , a ¤ a¡1 = e 2 H .

Since e is the identity in G, and H µ G, e is an identity in H .

Inverse: For all a, b 2 H, a ¤ b¡1 2 H .

Since e 2 H, we can let a = e.

) e ¤ b¡1 = b¡1 2 H for all b 2 H.

Hence each element in H has an inverse in H.

Closure: For all a, b 2 H, a ¤ b¡1 2 H .

For any c 2 H, we know that c¡1 2 H ffrom aboveg and (c¡1)¡1 = c.

Letting b = c¡1, then for all a, c¡1 2 H, a ¤ (c¡1)¡1 = a ¤ c 2 H.

Thus for all a, c 2 H , a ¤ c 2 H

) H is closed under ¤.

Hence H is a group, and ) H < G.

So, given a non-empty subset H of a group fG, ¤g, to show H is a subgroup of G it is sufficient to

show that a ¤ b¡1 2 H for all a, b 2 H . Conversely, if a ¤ b¡1 =2 H for any pair of elements a,

b 2 H then H is not a subgroup of fG, ¤g.

We can improve the result of Theorem 15 for fG, ¤g a finite group:

Theorem 16 (The subgroup test for finite groups)

Suppose fG, ¤g is a finite group and H is a non-empty subset of G. fH , ¤g is a subgroup of

fG, ¤g if a ¤ b 2 H for all a, b 2 H.
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SETS, RELATIONS, AND GROUPS 83

Proof:

Associative: The associativity of ¤ applies to all elements of G and it therefore must apply to all

elements of H, a subset of G.

Closure: The property a ¤ b 2 H for all a, b 2 H means fH, ¤g is closed fby definitiong.

Identity: As fG, ¤g is a finite group, the order of any x 2 H is finite, m say, where m 2 Z +.

) xm = e, but xm 2 H by closure, so e 2 H.

) the identity element is in H.

Inverse: Firstly, we note that e is its own inverse.

For all other x 2 H, suppose x has order m in G.

) xm = e where m 2 Z +, m > 2.

Now xm = x(m¡1)+1 = x1+(m¡1) where m ¡ 1 2 Z +

) e = xm¡1 ¤ x = x ¤ xm¡1

) xm¡1 is the inverse of x, and since x 2 H , x ¤ x 2 H , ...., xm¡1 2 H.

Since we can do this for all x 2 H other than e, and we already know that e is its

own inverse, every element x 2 H has an inverse in H.

Therefore fH , ¤g is a group, and in particular fH, ¤g is a subgroup of fG, ¤g.

Let H2 = f0, 2, 4g. Prove that fH2, +6g is a subgroup of fZ 6, +6g.

Z 6 = f0, 1, 2, 3, 4, 5g
) H2 is a non-empty subset of Z 6.

fZ 6, +6g is a finite group of order 6.

) to check fH2, +6g is a subgroup we need only check H2 is closed under +6

fby Theorem 16g

The Cayley table of H2 is: +6 0 2 4

0 0 2 4

2 2 4 0

4 4 0 2

Each element in the table is an element in H2, so H2 is closed under +6

) fH2, +6g < fZ 6, +6g as required.

Find all subgroups of the Klein 4-group V4 = fe, a, b, cg with Cayley table ¤ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Example 55

Example 54
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84 SETS, RELATIONS, AND GROUPS

ffeg, ¤g and fV4, ¤g are the trivial subgroups of fV4, ¤g.

fe, ag is a non-empty subset of V4, and under ¤ has Cayley table ¤ e a

e e a
a a e

) fe, ag is closed under ¤, and therefore ffe, ag, ¤g is a subgroup of V4.

fsubgroup test for finite groupsg
We can similarly show that ffe, bg, ¤g and ffe, cg, ¤g are subgroups of V4.

Any other subgroup must contain e.

If it contains a and b, then since a ¤ b = c, it must also contain c, by closure.

) this subgroup is V4.

Similarly, a ¤ c = b

and b ¤ c = a.

Thus we have found all subgroups of V4.

Using the above example, we can draw a lattice diagram of the subgroups of the Klein 4-group fV4, ¤g:

ffeg, ¤g
ffe, ag, ¤ g
ffe, bg, ¤ g
ffe, cg, ¤ g

fV4, ¤g

where two groups are connected (left to right) by branch(es) if and only if the first is a subgroup of the

second.

Consider the subset Z n f0g of R n f0g.

a Show that Z n f0g is closed under multiplication.

b Is fZ n f0g, £g a subgroup of the group fR n f0g, £g?

c Does your answer in b contradict Theorem 16?

a For a, b 2 Z n f0g, ab 2 Z .

Since a 6= 0 and b 6= 0, ab 6= 0.

) ab 2 Z n f0g.

Hence Z n f0g is closed under multiplication.

b fR n f0g, £g is a group, but fZ n f0g, £g is not a subgroup of fR n f0g, £g since

fZ n f0g, £g is not a group!

For example, the identity in fZ n f0g, £g is 1, and 5 2 Z n f0g has no inverse in Z n f0g,

since 5a 6= 1 for all a 2 Z n f0g.

c This does not contradict Theorem 16, since fR n f0g, £g is an infinite group, not a finite

group.

Example 56
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SETS, RELATIONS, AND GROUPS 85

EXERCISE G

1 For the following sets H and G and given operation ¤, determine whether fH, ¤g is a subgroup

of the group fG, ¤g.

a H = R +, G = R n f0g, ¤ = £ b H = Q +, G = R +, ¤ = £
c H = Z +, G = Z n f0g, ¤ = £ d H = f0, 2, 4g, G = Z 6, ¤ = +6

e H = f4n j n 2 Z g, G = Z , ¤ = +

f H = f8n j n 2 Z g, G = f4n j n 2 Z g, ¤ = +

g

of degree 3, and ¤ = composition of transformations

h H = fe, a, b, cg where

8<
:

a = (1 2)(3 4)

b = (1 3)(2 4)

c = (1 4)(2 3)

, G = S4, ¤ = composition of permutations

i For n 2 Z +, H = Un = fz j zn = 1, z 2 C g, G = C n f0g, ¤ = £
j H = fa + ib

p
5 j a, b 2 R g, G = C , ¤ = +

2 Let S = f(x, y) j x, y 2 Z g. Define the operation ¤ to be the composition of points such that

(a, b) ¤ (c, d) = (a + c, (¡1)cb + d).

a Prove that S is a group with respect to the operation ¤.

b Is the group fS, ¤g Abelian?

c Do the following sets with the operation ¤ form subgroups of S?

i H1 = f(a, 0) j a 2 Z g ii H2 = f(0, b) j b 2 Z g iii H3 = f(1, a) j a 2 Z g
3 Let fG, ¤g be a group and let fH1, ¤g and fH2, ¤g be subgroups of fG, ¤g.

Prove that fH1 \ H2, ¤g is a subgroup of fG, ¤g.

4 Let fG, ¤g be a group with identity e and let a 2 G be a fixed element in G.

Show that H = fx j x 2 G and x ¤ a = a ¤ xg is a subgroup of G.

5 Let G be an Abelian group with subgroup H < G. Let S = fx j x 2 G and x2 2 Hg.

Show that S is a subgroup of G.

6 a Show that ® =
1p
2

+
ip
2

generates a group H under multiplication.

b State the order of this group.

c State a group G such that H is a proper subgroup of fG, £g, where

i G is an infinite group ii G is a finite group.

7 Suppose fG, ¤g is a finite group with identity e and with an element x 6= e.

Let H = fxn j n 2 Z +g. Prove that fH, ¤g is a group.

H = fe, r, r2g where r is a clockwise rotation of 2¼
3 radians, G = D3, the dihedral group
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86 SETS, RELATIONS, AND GROUPS

In Theorem 14 we showed that if a 2 G is any element of a group fG, ¤g, the set

H = fan j n 2 Z g = fe, a, a2, a3, ...., a¡1, a¡2, a¡3, ....g is a subgroup of G. We say the group H

is generated by element a, and write H = hai.

For example: fZ , +g = f0, 1, 1 + 1, 1 + 1 + 1, ...., 1 ¡ 1 ¡ 1, 1 ¡ 1 ¡ 1 ¡ 1, ....g
= h1i

The group fZ , +g is generated by the element 1 since for each element n 2 Z +

n = 1 + 1 + :::: + 1| {z }
n times

= 1 ¤ 1 ¤ :::: ¤ 1| {z }
n times

= 1n in group notation, and for each element

n 2 Z , n < 0, n = ¡1 ¡ 1 ¡ :::: ¡ 1| {z }
¡n times

where ¡1 is the inverse of 1.

We see that 10 = e = 0 by definition.

A group fG, ¤g is called cyclic if there exists an element g 2 G such that for all x 2 G, x = gm

for some m 2 Z . In this case G = fe, g, g2, g3, ...., g¡1, g¡2, g¡3, ....g.

The element g is called a generator of the cyclic group, and we write G = hgi to indicate g is a

generator of G.

Theorem 17

All cyclic groups are Abelian.

Proof:

Let fG, ¤g be a cyclic group and let g 2 G be a generator of the group.

Let x, y 2 G.

Since the group is cyclic, there exists p, q 2 Z such that x = gp and y = gq

) x ¤ y = gp ¤ gq

= gp+q

= gq+p faddition of integers is commutativeg
= gq ¤ gp

= y ¤ x Therefore all cyclic groups are Abelian.

Examples of cyclic groups are:

² fZ , +g = h1i is an infinite cyclic group, which is a cyclic group of infinite order, with generator 1.

² ff1, i, ¡1, ¡ig, £g = hii is a finite cyclic group with generator i, since i2 = ¡1, i3 = ¡i,

i4 = 1

) f1, i, ¡1, ¡ig = f1, i, i2, i3g = hii.

We also see that (¡i)2 = ¡1, (¡i)3 = i, (¡i)4 = 1,

so f1, ¡i, ¡1, ig = f1, ¡i, (¡i)2, (¡i)3g = h¡ii
) ¡i is also a generator of this cyclic group.

CYCLIC GROUPSH
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² f2Z , +g, the group consisting of the even integers under addition, is an infinite cyclic group.

0 is the identity, and by definition 20 = e = 0 is an element of the group.

For all positive elements 2n 2 2Z , n 2 Z , and n > 0:

2n = 2 + 2 + :::: + 2| {z }
n times

= 2n in group notation

For all negative elements 2n 2 2Z , n 2 Z , and n < 0:

2n = (¡2) + (¡2) + :::: + (¡2)| {z }
¡n times

= (¡n) £ (¡2)

= (2¡1)¡n

= 2n in group notation

Hence every element can be written as 2n where n 2 Z , and so 2 is the generator of this group:

f2Z , +g = h2i = f0, 2, 4, 6, ...., ¡2, ¡4, ¡6, ....g.

By contrast, the Klein 4-group is not cyclic.

hai = fa, a2 = eg 6= V4

hbi = fb, b2 = eg 6= V4

hci = fc, c2 = eg 6= V4

hei = feg 6= V4

Since each element of the Klein 4-group has order 1 or 2, no element generates the 4 distinct elements

of the group.

Let H2 = f0, 2, 4g. Show that fH2, +6g is a cyclic group and find all the generators of H2.

0 is the identity.

0 +6 0 = 0 so 0 cannot be a generator.

22 = 2 +6 2 = 4 and 23 = 4 +6 2 = 0

) H2 = f0, 2, 22g
) H2 = h2i and 2 is a generator of this cyclic group.

42 = 4 +6 4 = 2 and 43 = 2 +6 4 = 0

) H2 = f0, 4, 42g
) H2 = h4i , and 4 is also a generator of this cyclic group.

Hence H2 has two generators, 2 and 4.

Note that in the above example elements 2 and 4 each have order 3, which is the order of the group H2.

We now investigate further the orders of elements in finite cyclic groups, and compare them with the

order of the group.

Example 57

The identity cannot be the

generator of a group which

has more than one element.
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Theorem 18

A finite cyclic group fG, ¤g of order n has a generator g of order n, and

G = hgi = fe, g, g2, ...., gn¡1g.

Proof:

By the definition of a cyclic group, G has a generator g, and G = hgi = fe, g, g2, ...., g¡1, g¡2, ....g.

We must prove that g has order n equal to the order of the group. Since G has finite order n, g has

finite order m 6 n, by Theorem 7.

Suppose the order m of g is m < n.

) hgi = fe, g, g2, ...., gm¡1g, and since gm = e, gm+1 = g and so on are already listed as

elements of the group.

Also, since gm = e

ggm¡1 = gm¡1g = e

) g¡1 = gm¡1

£7 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

Consider the group fZ 7 n f0g, £7g where £7 is multiplication

modulo 7.

The Cayley table is shown alongside:

Clearly, the identity element is 1.

We determine the order of the other elements of the group:

21 = 2, 22 = 4, 23 = 1 so the element 2 has order 3.

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 so the element 3 has order 6.

41 = 4, 42 = 2, 43 = 1 so the element 4 has order 3.

51 = 5, 52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1 so the element 5 has order 6.

61 = 6, 62 = 1 so the element 6 has order 2.

Note also that the elements 3 and 5 each have order 6, the same as the order of the group. Every element

of fZ 7 n f0g, £7g can therefore be written as powers of 3 or 5. The group is therefore cyclic, and 3

and 5 are the generators of the group.

1 3 2 6 4 5

£7 1 a a2 a3 a4 a5

1 1 1 a a2 a3 a4 a5

3 a a a2 a3 a4 a5 1

2 a2 a2 a3 a4 a5 1 a

6 a3 a3 a4 a5 1 a a2

4 a4 a4 a5 1 a a2 a3

5 a5 a5 1 a a2 a3 a4

The cyclic nature of fZ 7 n f0g, £7g can be seen in a

rearrangement of the Cayley table. We let a = 3 and

replace 2 by a2, 6 by a3, 4 by a4, and 5 by a5.
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SETS, RELATIONS, AND GROUPS 89

Similarly g¡2 = (g2)¡1 = gm¡2 since g2gm¡2 = gm¡2g2 = gm = e, and so on, are already listed

as elements in hgi.

) there are no further elements.

Thus hgi = fe, g, g2, ...., gm¡1g = fgn j n 2 Z g.

This is a contradiction, since G = hgi contains n distinct elements.

Therefore the element g has order m = n, and G = hgi = fe, g, g2, ...., gn¡1g.

Theorem 19

For all n 2 Z +, there exists a cyclic group of order n.

Proof:

A group of order 1 must contain the identity e, and ffeg, ¤g is cyclic.

Let G = fa, a2, a3, ...., ang where element a has order n.

) G = fe, a, a2, ...., an¡1g has n distinct elements, and an = e.

For example, when n = 1, G = fag = feg; when n = 2, G = fa, a2g = fa, eg.

Closure: Let ap, aq 2 G where p, q 2 Z + and 1 6 p, q 6 n

Then ap ¤ aq = ap+q

Now either 2 6 p + q 6 n in which case ap+q 2 G

or p + q = n + r where 1 6 r 6 n

) ap+q = an+r = an ¤ ar = e ¤ ar = ar

) as 1 6 r 6 n, ar 2 G, and so ap+q 2 G

Hence G is closed under ¤.

Associative: For all x, y, z 2 G, x ¤ (y ¤ z) = ap ¤ (aq ¤ ar)

= ap ¤ aq+r

= ap+q+r

= ap+q ¤ ar

= (ap ¤ aq) ¤ ar

= (x ¤ y) ¤ z

) ¤ is an associative operation on G.

Identity: an = e is the identity.

Inverse: If 1 6 p 6 n¡ 1 is an integer then 1 6 n¡ p 6 n¡ 1 and therefore ap, an¡p 2 G.

Then ap ¤ an¡p = an¡p ¤ ap

= e

) (ap)¡1 = an¡p and (an¡p)¡1 = ap.

an = e is its own inverse.

Hence each element has an inverse.

Therefore fG, ¤g is a group.
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For each n 2 Z +, the cyclic group fZ n, +ng = h1i is a classic example of a cyclic group of order n.

The generators of this group are the elements 1, and any element in f2, 3, ...., n¡ 1g which is coprime

to n, which means they have no common factors with n apart from 1.

Theorem 20

A subgroup of a cyclic group is cyclic.

The proof of this theorem is omitted.

EXERCISE H

1 Consider the group fZ 12, +12g of integers modulo 12 under addition modulo 12.

a State the order of each element in the group.

b Find a subgroup:

i of order 3 ii of order 4.

c Show that ff0, 2, 4, 6, 8, 10g, +12g is a subgroup of fZ 12, +12g.

d Find, if possible, all generators of

i fZ 12, +12g ii the subgroup in c.

2 Consider each of the following groups.

i Determine if the group is cyclic.

ii If the group is cyclic, find all of its generators. If the group is not cyclic, list all of its

subgroups.

a ff2, 4, 6, 8g, £10g b ff1, 3, 5, 7g, £8g
3 Consider the group fG, £ng where G is the set containing the n ¡ 1 residue classes modulo n

excluding 0, and £n is multiplication modulo n. Which elements are generators of fG, £ng when:

a n = 3 b n = 5 c n = 7 d n = 11?

4 Let fG, ¤g be a finite cyclic group of order n. Prove that if g is a generator of G, then g¡1 is

also a generator of G.

5 Let R be the set of all rotations in Dn, the dihedral group of degree n, including the identity

transformation e. Show that R is a cyclic subgroup of Dn and find a generator for R.

6 Let fG, ¤g be an Abelian group of order 6 with identity e. Suppose G contains an element ® of

order 2, and an element ¯ of order 3.

a Write down all elements of G in terms of e, ®, and ¯.

b Construct a Cayley table for G.

c Determine the order of each element in G.

d Show that G is a cyclic group, and find all generators of G.

e Write down the unique subgroup of order 3 of G.

f Determine whether or not fe, ®, ¯, ®¯g is a subgroup of G.

7

a hii b

¿
1
2 + i

p
3

2

À
c

¿p
3

2
+

i

2

À
d

−p
3 + i

®Find the order of each of the following cyclic groups, where the operation is multiplication in C :
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8 Suppose G = hgi is a cyclic group of order 12 with generator g.

a Show that
−
g4
®

is a subgroup of G, and find its order.

b Find the order of the group: i
−
g2
®

ii
−
g3
®

iii
−
g6
®
.

The young French mathematician Évariste Galois (1811 - 1832)

was the first to use the term group. At age 14, Galois studied

his first mathematics course, and by 15 was already studying the

works of Legendre and Lagrange.

Galois studied polynomial equations and under what conditions

they were solvable by radicals. This means the polynomial

must by solvable in a finite number of steps, using only the

coefficients and simple formulae with the operations addition,

subtraction, multiplication, division, and taking nth roots. For

example, quadratic equations are solvable in one step using the

quadratic formula, and cubic and quartic equations can be solved

using similar formulae in several steps.

Working with another mathematician Abel, Galois proved that a

general polynomial equation of degree greater than or equal to 5 is

not solvable by radicals. The original methods used by Galois in

this proof became foundations for Group theory, and in particular

Galois theory.

Applications of Group theory can be found in many other fields of study including Physics

and Chemistry. Groups are used when describing symmetries in physical systems, symmetries in

molecules, and in classifying crystalline structures. Even the famous puzzle the Rubik’s cube can be

solved with the help of Group theory.

In his short life, Galois failed examinations, spent time in jail for political activities, and sent his work

to other mathematicians only for the manuscripts to be lost on at least two occasions. Tragically, he

died from wounds from a duel at age 20.

Some of Galois’ great contributions to mathematics may have been lost, if not for a letter written to

his friend Chevalier on the night before the duel. In this letter he made annotations and corrections

to some of his previous work. Famously, he wrote next to one theorem, “There are a few things left

to be completed in this proof. I have not the time.”
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92 SETS, RELATIONS, AND GROUPS

Let fG, ¤g and fH, ±g be two groups with identities eG and eH respectively.

A function f : G ! H with domain G is a homomorphism from G to H if f(a ¤ b) = f(a) ± f(b)

for all a, b 2 G.

The kernel of f , denoted Ker(f), is the set Ker(f) = fa 2 G j f(a) = eHg of elements in G

which are mapped by f to the identity in H.

The range of f , denoted R(f), is the set R(f) = ff(a) j a 2 Gg of elements in H to which the

elements in G are mapped by f .

If f is also a bijection, then f is an isomorphism from G to H and we say the groups G and H are

isomorphic. We denote this by G »= H.

For the two given groups, determine whether the function f is a homomorphism. If it is, find

Ker(f) and R(f), and determine whether f is an isomorphism.

a f : fR , +g ! fR , +g where f(x) = 3x

b f : fR , +g ! fR +, £g where f(x) = 2x

c f : fR 2, +g ! fR 2, +g where f(x, y) = (x, 0)

d f : fR +, £g ! fR +, £g where f(x) =
p
x

e f : fG, ¤g ! fH , ±g where f(x) = eH .

a f(x + y) = 3(x + y)

= 3x + 3y

= f(x) + f(y) for all x, y 2 R

) f is a homomorphism.

Ker(f) = f0g since f(x) = 3x = 0, the identity in fR , +g, if and only if x = 0.

R(f) = R
f is one-to-one and onto

) f is an isomorphism.

b f(x + y) = 2x+y

= 2x £ 2y

= f(x) £ f(y) for all x, y 2 R

) f is a homomorphism.

Ker(f) = f0g since f(x) = 1, the identity in fR +, £g, if and only if x = 0.

R(f) = R +

f is one-to-one and onto

) f is an isomorphism.

c f((x1, y1) + (x2, y2)) = f(x1 + x2, y1 + y2)

= (x1 + x2, 0)

= (x1, 0) + (x2, 0)

= f(x1, y1) + f(x2, y2) for all (x1, y1), (x2, y2) 2 R 2

) f is a homomorphism.

HOMOMORPHISMI

Example 58
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SETS, RELATIONS, AND GROUPS 93

Ker(f) = f(0, y) j y 2 R g since f(x, y) = (0, 0), the identity in fR 2, +g, if and only

if x = 0

= fall points on the y-axisg
R(f) = f(x, 0) j x 2 R g

= fall points on the x-axisg
f is not one-to-one, and f is not onto

) f is not an isomorphism.

d f(x + y) =
p
x + y

f(x) + f(y) =
p
x +

p
y

) in general, f(x + y) 6= f(x) + f(y)

) f is not a homomorphism.

e f(x ¤ y) = eH and f(x) ± f(y) = eH ± eH = eH

) f(x ¤ y) = f(x) ± f(y)

) f is a homomorphism.

Ker(f) = G ) f is not one-to-one unless jGj = jHj = 1.

R(f) = feHg ) f is not onto unless jHj = 1.

) in general, f is not an isomorphism.

Theorem 21

If f : G ! H is a homomorphism between groups fG, ¤g and fH , ±g with identities eG and eH
respectively, then:

1 f(eG) = eH , or in other words eG 2 Ker(f), and

2 f(a¡1) = f(a)¡1 for all a 2 G.

Proof:

1 Let a 2 G be any element in G.

Since f is a homomorphism, f(a ¤ eG) = f(a) ± f(eG)

) f(a) = f(a) ± f(eG)

Since f(a) is an element of H, let f(a) = h 2 H.

Since H is a group, h¡1 exists in H .

We have h = h ± f(eG)

) h¡1 ± h = h¡1 ± (h ± f(eG)) fmultiply on the left by h¡1g
= (h¡1 ± h) ± f(eG) fassociativity in Hg

) eH = eH ± f(eG)

) eH = f(eG) ff(eG) is an element of H, so eH ± f(eG) = f(eG)g
2 Let a 2 G be any element in G.

eG = a ¤ a¡1 = a¡1 ¤ a

) f(eG) = f(a ¤ a¡1) = f(a¡1 ¤ a)

eH = f(a) ± f(a¡1) = f(a¡1) ± f(a) fby part 1 and since f is a homomorphismg
) by the definition of inverse, f(a) and f(a¡1) are inverses of each other in group H.

) f(a¡1) = f(a)¡1 as required.
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94 SETS, RELATIONS, AND GROUPS

Theorem 22

A homomorphism f : G ! H of groups fG, ¤g and fH, ±g is an injection if and only if

Ker(f) = feGg, where eG is the identity of G.

Proof:

Let eH be the identity of H.

( ) ) If f is an injection, since f(eG) = eH from Theorem 21, no further element of G can map

to eH in H.

) Ker(f) = feGg
( ( ) Suppose Ker(f) = feGg.

Suppose f(a) = f(b) for a, b 2 G, a 6= b.

Consider f(a ¤ b¡1) = f(a) ± f(b¡1) fsince f is a homomorphismg
= f(b) ± f(b¡1) fsince f(a) = f(b)g
= f(b) ± f(b)¡1 fby Theorem 21g
= eH

) a ¤ b¡1 2 Ker(f)

) a ¤ b¡1 = eG

) a ¤ b¡1 ¤ b = eG ¤ b fmultiply on the right by bg
) a = b

Hence f(a) = f(b) implies a = b

) f is an injection.

Theorem 23

Suppose f : fG, ¤g ! fH , ±g is a homomorphism of groups.

1 The kernel of f is a subgroup of G. Ker(f) < G.

2 The range of f is a subgroup of H. R(f) < H.

Proof:

1 Ker(f) = fa 2 G j f(a) = eHg is clearly a subset of G.

eG 2 Ker(f) by Theorem 21

) Ker(f) is non-empty.

Suppose a, b are two elements in Ker(f), so f(a) = f(b) = eH .

Consider f(a ¤ b¡1) = f(a) ± f(b¡1) ff is a homomorphismg
= eH ± (f(b))¡1 fTheorem 21g
= eH ± (eH)¡1

= eH ± eH
= eH

) a ¤ b¡1 2 Ker(f).

Since Ker(f) is a non-empty subset of G, and since a ¤ b¡1 2 Ker(f) for all a, b 2 Ker(f),

by Theorem 15, the subgroup test, Ker(f) < G.
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SETS, RELATIONS, AND GROUPS 95

2 R(f) = ff(a) j a 2 Gg is clearly a subset of H.

f(eG) = eH fTheorem 21g
) eH 2 R(f)

) R(f) is non-empty.

Suppose h1, h2 are two elements in R(f), so h1 = f(a1)

and h2 = f(a2) for some elements a1, a2 2 G.

Consider h1 ± h ¡1
2 = f(a1) ± f(a2)

¡1

= f(a1) ± f(a ¡1
2 ) fTheorem 21g

= f(a1 ¤ a ¡1
2 )

= f(a) for some element a = a1 ¤ a ¡1
2 2 G

since a1, a2 2 G and G is a group

) h1 ± h ¡1
2 2 R(f).

Since R(f) is a non-empty subset of H, and since h1 ± h ¡1
2 2 R(f) for all h1, h2 2 R(f),

by Theorem 15, the subgroup test, R(f) < H.

EXERCISE I

1 For the two given groups, determine whether the function f is a homomorphism. If it is:

i find Ker(f) and R(f) ii determine whether f is an isomorphism.

a f : fR , +g ! fR , +g where f(x) = x2

b f : fR , +g ! fR , +g where f(x) = 7x

c f : fR n f0g, £g ! fR n f0g, £g where f(x) = x2

d f : fR +, £g ! fR +, £g where f(x) = x2

e f : fR , +g ! fR +, £g where f(x) = ex, where e is the exponential constant

f f : fZ , +g ! f5Z , +g the additive group of integer multiples of 5, where f(x) = 5x

g f : fZ , +g ! fZ 5, +5g where f(x) = x (mod 5)

h f : S3 ! S3 where f(x) = x2 for x 2 S3, the symmetric group of degree 3.

2 Let fP , +g be the additive group of polynomials of degree n 2 Z + [ f0g, in x, x 2 R .

Define f : fP , +g ! fP , +g by f(p(x)) = p0(x), the derivative of p.

a Show that f is a homomorphism.

b Determine: i Ker(f) ii R(f)

c Write down a proper subgroup of fP , +g.

d Is f an isomorphism? Explain your answer.

3 Suppose f : fG, ¤g ! fH , ±g is a homomorphism of groups, and let f(G) = ff(g) j g 2 Gg.

a Prove that f(G) is a group.

b Show that if G is Abelian, then f(G) is Abelian.

c Show that if G is cyclic, then f(G) is cyclic.

d Determine whether the following statement is true or false, giving reasons for your answer:

“If g 2 G has finite order jgj = m, then f(g) has order m in H .”
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96 SETS, RELATIONS, AND GROUPS

Matching Cayley tables is

feasible only when the order

of the group is small.

Here, denotes the operation in

group and not composition of

functions.

±
H

We have seen that a bijective homomorphism is called an isomorphism.

Specifically, we can define:

Two groups fG, ¤g and fH, ±g are isomorphic if:

² there is a bijection f : G 7! H and

² f(a ¤ b) = f(a) ± f(b) for all a, b 2 G.

Such a function f is called an isomorphism from G to H.

We can sometimes use Cayley tables to help establish isomorphism. It requires that for every p and q in

G, if f(p) = p0 2 H and f(q) = q0 2 H then the element in the p0 row and q0 column of the Cayley

table of fH , ±g is f(p ¤ q) = p0 ± q0 = (p ¤ q)0.

¤ ¢ ¢ ¢ q ¢ ¢ ¢
...

...

p ¢ ¢ ¢ p ¤ q ¢ ¢ ¢
...

...

± ¢ ¢ ¢ q0 ¢ ¢ ¢
...

...

p0 ¢ ¢ ¢ p0 ± q0 ¢ ¢ ¢
...

...

For two isomorphic groups, their elements are in one-to-one correspondence.

It follows that:

² If two finite groups are isomorphic, then they have the same order.

² If two groups do not have the same order, then they cannot be isomorphic.

Show that groups fZ 4, +4g and fZ 5 n f0g, £5g are isomorphic.

We must construct an isomorphism f from one group to the other.

The Cayley table for fZ 5 n f0g, £5g is: £5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

The Cayley table for the group fZ 4, +4g is:

The two groups fZ 5 n f0g, £5g and

fZ 4, +4g have the same structure.

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

ISOMORPHISMJ

Example 59

f(q) = q0

f(p) = p0

f (p ¤ q) = (p ¤ q)0 = p0 ± q0
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SETS, RELATIONS, AND GROUPS 97

We define a mapping f : fZ 4, +4g ! fZ 5 n f0g, £5g by 0 7! 1

1 7! 2

2 7! 4

3 7! 3.

f is one-to-one and onto, so f is a bijection.

The similarity of the Cayley tables ensures that for all a, b 2 Z 4, f(a +4 b) = f(a) £5 f(b).

) f is a homomorphism, and since f is also a bijection, it is an isomorphism.

) by definition, the groups fZ 4, +4g and fZ 5 n f0g, £5g are isomorphic.

Prove that the group of integers Z under addition is isomorphic to the group of even integers, 2Z ,

under addition.

We must construct an isomorphism f from one group to the other.

Let f : Z ! 2Z be defined by f(x) = 2x

First, we establish that f is a bijection.

Suppose f(a) = f(b), where a, b 2 Z
) 2a = 2b

) a = b.

No two distinct elements a, b 2 Z can map to the same value in 2Z , so f is an injection.

Suppose q 2 2Z , then q = 2a for some a 2 Z
) f(a) = q.

Thus each element in 2Z is the image of an element in Z under f , and so f is a surjection.

Since f is both an injection and a surjection, f is a bijection.

Now f(a + b) = 2(a + b) = 2a + 2b = f(a) + f(b) for all a, b 2 Z .

) f is a homomorphism.

Since f is both a bijection and a homomorphism, it is an isomorphism, and the two groups

fZ , +g and f2Z , +g are isomorphic.

The above example shows us that 2Z < Z , 2Z 6= Z , and yet f2Z , +g »= fZ , +g. So, for the proper

subgroup f2Z , +g of fZ , +g, the groups 2Z and Z are in fact isomorphic! It is crucial here that both

groups have infinite order. This could not occur for finite groups.

PROPERTIES OF ISOMORPHISM

Determining whether two groups are isomorphic is not always easy, so it is useful to know some properties

of isomorphism between groups. If any one of these fails in a particular instance, then the two given

groups cannot be isomorphic.

Since every isomorphism is also a homomorphism, Theorem 21 gives us our first two properties. For

completeness we include direct proofs of Property 1 and Property 2 for this section.

Example 60
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98 SETS, RELATIONS, AND GROUPS

Property 1: If fG, ¤g and fH, ±g are isomorphic then the identity of fG, ¤g is mapped to

the identity of fH, ±g.

Proof:

Let eG be the identity element of fG, ¤g and let f : G ! H be the isomorphism.

) for all a, b 2 G, f(a ¤ b) = f(a) ± f(b).

Now eG 2 G and a ¤ eG = eG ¤ a = a for all a 2 G.

) f(a ¤ eG) = f(a) ± f(eG) = f(a) and f(eG ¤ a) = f(eG) ± f(a) = f(a)

) f(a) = f(a) ± f(eG) = f(eG) ± f(a) for all f(a) 2 H

Since f is an isomorphism, f(eG) 2 H. Furthermore, each h 2 H is the image of an element in G,

since f is onto.

) letting h = f(a), we find h = h ± f(eG) = f(eG) ± h for all h 2 H

) f(eG) is the identity element eH of fH, ±g.

Property 2: If fG, ¤g and fH, ±g are isomorphic then the inverse of an element of fG, ¤g
is mapped to the inverse of the corresponding element in fH , ±g.

So, for f an isomorphism from G to H, (f(a))¡1 = f(a¡1) for all a 2 G.

Proof:

For f an isomorphism from G to H , f(a ¤ b) = f(a) ± f(b) for all a, b 2 G.

Now a¡1 2 G and a ¤ a¡1 = a¡1 ¤ a = eG the identity of G

) f(a ¤ a¡1) = f(a) ± f(a¡1) = f(eG) = eH the identity in H fby Property 1g
and f(a¡1 ¤ a) = f(a¡1) ± f(a) = f(eG) = eH

) eH = f(a) ± f(a¡1) = f(a¡1) ± f(a)

) f(a¡1) is an inverse of f(a) in H, written (f(a))¡1 = f(a¡1).

Property 3: If fG, ¤g and fH , ±g are isomorphic then for all

a 2 G, a and f(a) will have the same order.

Property 4: If fG, ¤g and fH, ±g are isomorphic, fG, ¤g is

Abelian if and only if fH , ±g is Abelian.

You are asked to prove

and in

the following exercise.

Properties 3 4
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SETS, RELATIONS, AND GROUPS 99

Property 5: If fG, ¤g and fH, ±g are isomorphic, fG, ¤g is cyclic if and only if fH, ±g
is cyclic.

Proof:

Suppose G is cyclic, so G = hgi where g 2 G is a generator of G.

Let h = f(g) 2 H, where f : fG, ¤g ! fH, ±g is an isomorphism from G to H.

By Property 3, g and h = f(g) have the same order.

By Theorem 14, where hhi = fhn j n 2 Z g, hhi < H .

Thus if G and H are finite groups, jhgij = jGj fg is a generator of Gg
= jHj fG »= Hg
= jhhij fsince jgj = jhj g

) since hhi < H and jHj = jhhij, H = hhi and ) H is cyclic.

If G and H are infinite groups, we prove hhi = H by showing hhi µ H and H µ hhi:

By Theorem 14, hhi < H and so hhi µ H.

For any y 2 H , y = f(x) for some x in G. fthe isomorphism f is a surjectiong
But x 2 G, so x = gm for some m 2 Z . fG = hgig
) y = f(gm)

= f(g ¤ :::: ¤ g| {z }
m times

)

= f(g) ± f(g) ± :::: ± f(g)| {z }
m times

ff is an isomorphismg

= (f(g))m

= hm

) y 2 hhi , and y was any element of H.

) H µ hhi .

It follows that H = hhi and therefore H is a cyclic group.

Similarly, if H is cyclic then G is cyclic.

Property 6: If fG, ¤g and fH, ±g are isomorphic then any subgroup of fG, ¤g will be

isomorphic to some subgroup of fH, ±g.

Proof:

Let M < G be a subgroup of G.

Let f(M) = ff(x) j x 2 Mg where f : fG, ¤g ! fH, ±g is an isomorphism.

) f(M) µ H.

(continued next page)
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100 SETS, RELATIONS, AND GROUPS

For f(x), f(y) 2 f(M), (f(y))¡1 = f(y¡1) by Property 2, and since y 2 M , y¡1 2 M since

M is a group.

) f(y¡1) 2 f(M).

Consider f(x) ± (f(y))¡1 = f(x) ± f(y¡1) = f(x ¤ y¡1). ff is an isomorphismg
Now x ¤ y¡1 2 M , since x, y 2 M and M is a subgroup of G

) f(x ¤ y¡1) 2 f(M)

We have shown f(M) µ H, and that f(x) ± (f(y))¡1 2 f(M) for all f(x), f(y) 2 f(M).

) f(M) is a subgroup of H, by the subgroup test Theorem 15.

Theorem 24

For any n 2 Z +, all cyclic groups of finite order n are isomorphic to each other.

Proof:

Let fG, ¤g and fH, ±g be cyclic groups of order n. Suppose G = hgi = feG, g, g2, ...., gn¡1g
where eG = g0 = gn and H = hhi = feH , h, h2, ...., hn¡1g where eH = h0 = hn.

Let f : G ! H be defined by f(gi) = hi, i = 0, 1, ...., n ¡ 1.

f is clearly one-to-one and onto, so f is a bijection.

For gi, gj 2 G where 0 6 i, j 6 n¡ 1 we find f(gi ¤ gj) = f(gi+j) where 0 6 i+ j 6 2n¡ 2.

) i + j = r or i + j = n + r for some integer r such that 0 6 r 6 n ¡ 1.

) gi+j = gr or gi+j = gn+r = gn ¤ gr = eG ¤ gr = gr.

) gi+j = gr for some integer 0 6 r 6 n ¡ 1.

) f(gi ¤ gj) = f(gi+j) = f(gr) = hr for some integer 0 6 r 6 n¡ 1.

Similarly, f(gi) ± f(gj) = hi ± hj

= hi+j

) hi+j = hr or hn+r for the same integer 0 6 r 6 n ¡ 1.

= hr or hn ± hr

= hr or eH ± hr

= hr or hr

) hi+j = hr.

) f(gi ¤ gj) = f(gi) ± f(gj) for all gi, gj 2 G.

Hence f is an isomorphism, and ) G »= H.

Since fZ n, +ng, n 2 Z +, is a cyclic group of order n (generated by element 1), the above theorem

tells us that, up to isomorphism, this is the unique cyclic group of order n, n 2 Z +.
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SETS, RELATIONS, AND GROUPS 101

Earlier we investigated the groups of order 1, 2, 3, and 4.

The groups of orders 1, 2, and 3 were all shown to be cyclic. Therefore, up to isomorphism, there is a

unique group of order 1, a unique group of order 2, and a unique group of order 3.

We can of course find examples of different groups of order 2, but the above theorem tells us they are

isomorphic.

For n = 4, we found the cyclic group fZ 4, +4g and the Klein 4-group. These groups are not

isomorphic, since for example Z 4 contains element 1 of order 4 and the Klein 4-group contains no

element of order 4. fProperty 3 of isomorphism failsg
Thus, up to isomorphism, there are two distinct groups of order 4.

EXERCISE J

1 Show that the group f0, 1, 2g under +3 addition modulo 3 is isomorphic to the group f1, 2, 4g
under £7 multiplication modulo 7.

2 Show that the group f1, ¡1
2 + i

p
3

2 , ¡1
2 ¡ i

p
3

2 g under multiplication is isomorphic to the group

f1, 2, 4g, where 1, 2, and 4 are residue classes modulo 7 under £7 multiplication modulo 7.

3 Show that the group f0, 1, 2, 3, 4g under +5 addition modulo 5 is isomorphic to the group of the

five fifth roots of unity under multiplication.

4 Determine, with reasons, whether or not the two given groups are isomorphic.

a G = ff2, 4, 6, 8g, £10g and H = ff1, 3, 5, 7g, £8g
b G = fZ , +g and H = fnZ , +g, where n 2 Z + is a constant

c G = fZ 6, +6g and H = S6, the symmetric group of degree 6

d G = fZ 6, +6g and H = S3, the symmetric group of degree 3

e G = fhii, £g and H = fh1 + ii, £g

5 Prove that the multiplicative group of positive real numbers is isomorphic to the additive group of

real numbers.

Hint: Use f(x) = lnx.

6 Prove Property 3:

If fG, ¤g and fH, ±g are isomorphic then for all a 2 G, a and f(a) will have the same order.

7 Prove Property 4:

If fG, ¤g and fH , ±g are isomorphic, fG, ¤g is Abelian if and only if fH, ±g is Abelian.

8 For the dihedral groups and symmetric groups:

a Show that D3
»= S3. b Explain why Dn À Sn for n 2 Z + and n > 3.

9 Suppose groups fG1, ¤g and fG2, Mg are isomorphic, so G1
»= G2.

Suppose also groups fG2, Mg and fG3, ¤g are isomorphic, so G2
»= G3.

Prove that G1
»= G3

Hint: You need to construct an isomorphism between G1 and G3.
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102 SETS, RELATIONS, AND GROUPS

10 Let R be the group of symmetries of a rectangle which is not a square.

a Show that R is isomorphic to the group of permutations

G = fe, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)g under composition of permutations.

b Show that G is isomorphic to the Klein 4-group.

c What can you deduce about R and the Klein 4-group?
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Since , is Abelian,

the right cosets would equal

the corresponding left cosets.

f gZ 6 6+

SETS, RELATIONS, AND GROUPS 103

If fH, ¤g is a subgroup of a group fG, ¤g and g 2 G is any fixed element in G, then

gH = fg ¤h j h 2 Hg is called a left coset of H in G, and Hg = fh ¤ g j h 2 Hg is called a right

coset of H in G.

Theorem 25

If fG, ¤g is an Abelian group and fH , ¤g is a subgroup of G, then gH = Hg for any g 2 G.

In other words, the left coset of H defined by g equals the right coset of H defined by g.

For fH2 = f0, 2, 4g, +6g < fZ 6, +6g, find the left cosets of H2 in Z 6.

The left cosets of H2 in Z 6 are:

0H2 = f0 +6 h j h 2 H2g
= f0 +6 0, 0 +6 2, 0 +6 4g
= f0, 2, 4g
= H2

1H2 = f1 +6 0, 1 +6 2, 1 +6 4g = f1, 3, 5g
2H2 = f2 +6 0, 2 +6 2, 2 +6 4g = f2, 4, 0g = H2

3H2 = f3 +6 0, 3 +6 2, 3 +6 4g = f3, 5, 1g
4H2 = f4 +6 0, 4 +6 2, 4 +6 4g = f4, 0, 2g = H2

5H2 = f5 +6 0, 5 +6 2, 5 +6 4g = f5, 1, 3g
Hence H2 has only two distinct cosets in Z 6:

f0, 2, 4g = H2 (itself) and f1, 3, 5g.

We proceed using left cosets, but all statements and results hold equivalently for right cosets of a subgroup

of a (not necessarily Abelian) group.

In the above example, note that:

² the only coset which is a subgroup of the group is the coset equal to the original subgroup itself

² gH = H for all g 2 H

² two left cosets of the subgroup are either identical or are disjoint

² the set union of the left cosets of the subgroup equals the given group.

COSETS AND LAGRANGE’S THEOREMK

Example 61
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104 SETS, RELATIONS, AND GROUPS

Theorem 26

Suppose fH, ¤g is a subgroup of group fG, ¤g, and x, y 2 G are any elements in G.

1 The cardinality of a left coset of H equals the cardinality of H .

2 xH = H if and only if x 2 H .

3 xH = yH if and only if x¡1y 2 H.

4 xH \ yH = xH or ?.

5 The only left coset of H which is a subgroup of G is H itself.

6 G is the disjoint union of the left cosets of H in G.

Proof:

1 Consider the left coset xH of H in G.

For h1, h2 2 H , x ¤ h1 = x ¤ h2

, x¡1 ¤ x ¤ h1 = x¡1 ¤ x ¤ h2 fmultiplying on the left by x¡1, where

x has inverse x¡1 in Gg
, e ¤ h1 = e ¤ h2 ffor e the identity in Gg

, h1 = h2

Hence the elements of H and xH are in one-to-one correspondence

) the cardinality of H equals the cardinality of xH.

If H is a finite group, then jHj = jgHj, which means H and any coset of H have the same

number of elements.

2 ( ) ) Suppose xH = H

) xh 2 H for all h 2 H

) xe 2 H since e 2 H fwhere e is the identity of Gg
) x 2 H

( ( ) If x 2 H , then xH = fx ¤ h j h 2 Hg
But H is closed under ¤
) x ¤ h 2 H for all h 2 H

) xH µ H .... (1)

Also, for h 2 H consider x¡1 ¤ h 2 H fsince x 2 H, x¡1 2 Hg
) x ¤ (x¡1 ¤ h) 2 xH

) (x ¤ x¡1) ¤ h 2 xH fsince ¤ is associativeg
) e ¤ h 2 xH

) h 2 xH

This result is true for all h 2 H , so H µ xH .... (2)

(1) and (2) ) H = xH.

3 For x, y 2 G:

xH = yH

, x¡1 ¤ xH = x¡1 ¤ yH fmultiplying on the left by x¡1 and since ¤ is associativeg
, H = (x¡1 ¤ y)H fsince x¡1 ¤ x = e and eH = Hg

, x¡1 ¤ y 2 H by part 2
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This fundamental result of

Group theory is attributed

to

( - ).

Joseph Lagrange

1736 1813

SETS, RELATIONS, AND GROUPS 105

4 Consider x, y 2 G and suppose xH \ yH 6= ?

) x ¤ h1 = y ¤ h2 for some h1, h2 2 H

) h1 = x¡1yh2 fmultiplying on the left by x¡1 and simplifyingg
) h1h

¡1
2 = x¡1y fmultiplying on the right by h ¡1

2 and simplifyingg
Now h1h

¡1
2 2 H, so x¡1y 2 H

) xH = yH fby part 3g
) xH \ yH = xH

) either xH \ yH = xH, or xH \ yH = ?.

5 Since e 2 H, e =2 gH for all g 2 G and g =2 H by properties 2 and 4.

) no coset of H besides H contains e, the unique identity in G.

) H is the only coset of H which is a subgroup of G.

6 For g 2 G, g = g ¤ e 2 gH , so each element of G lies in a coset of H .

The result now follows from 4.

Theorem 27 (Lagrange’s theorem)

If fH, ¤g is a subgroup of a finite group fG, ¤g then the order of H

is a factor of the order of G.

Proof:

Suppose jHj = m and jGj = n, where m, n 2 Z .

By Theorem 26, jgHj = jHj = m for any left coset gH of H in G.

Since G is the disjoint union of the left cosets of H in G, it follows that

jGj = n = rm = r jHj for some r 2 Z +.

) n = rm and hence the result.

Corollary 1:

The order of an element of a finite group is a factor of the order of the group.

Proof:

Let fG, ¤g be a finite group of order n.

Suppose h 2 G has order m, so H = hhi = fe, h, h2, ...., hm¡1g is a subgroup of G by

Theorem 14, and jHj = jhj = m.

By Lagrange’s theorem, jGj = n = r jHj for some r 2 Z +.

) n = rm

) jGj = r jhj
) the order of h is a factor of the order of G.

Corollary 2:

For n 2 Z + and n a prime, up to isomorphism, there is a unique group of order n.
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106 SETS, RELATIONS, AND GROUPS

Proof:

Existence: By previous results, for each n 2 Z +, fZ n, +ng is a (cyclic) group of order n.

Uniqueness: If fG, ¤g is a group and jGj = n is prime, then 1 and n are the only factors of n.

) by Corollary 1 to Lagrange’s theorem, each non-identity element in G has order n.

) for g 2 G, g 6= e, jgj = jhgij = n = jGj
) G = hgi = fe, g1, g2, ...., gn¡1g and ) G is a cyclic group.

Hence by Theorem 24, up to isomorphism, G is unique.

GROUPS OF ORDER n

We have shown that, up to isomorphism, there is a unique group of order n = 1, 2, 3, or n prime, and

these are all cyclic groups.

For n = 4, we have shown there are two non-isomorphic groups of order 4, a cyclic group and the

Klein 4-group.

For n 2 Z +, n > 4 and n not prime, current results show there exist p pairwise non-isomorphic groups

of order n, according to the following table:

n 4 6 8 9 10 12 14 15 16 18 20 21 22 24 25

p 2 2 5 2 2 5 2 1 14 5 5 2 2 15 2

EXERCISE K

1 Consider fH = f0, 3g, +6g < fZ 6, +6g.

a Find the left cosets of H in fZ 6, +6g.

b Hence find the right cosets of H in fZ 6, +6g.

2 The group H = f0, 4, 8g under +12 addition modulo 12 is a subgroup of fZ 12, +12g.

a Find the left cosets of H in fZ 12, +12g.

b Explain why each left coset of H is also a right coset of H.

3 Consider R = fe, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)g, a subgroup of S4 under composition of

permutations.

a How many distinct left cosets does R have in S4?

b How many left cosets of R in S4 are subgroups of S4?

c Consider the cosets (1 2 3)R and (1 2 3 4)R. How many elements do they have in common?

d Show that (1 2)R and R(1 2) are equal sets, even though S4 is not an Abelian group.

4 Suppose H is a subgroup of a group G. Prove that if gH = Hg for g 2 G, then g¡1H = Hg¡1.

5 Explain why S5 has no subgroup of order 7.

6 Consider the symmetric group Sn of degree n, n 2 Z +. Find a subgroup of order m! for each

m 2 Z + and m 6 n.

7 Suppose G is a finite group of order 36 with identity e. Show that there is a unique element g 2 G

such that g7 = e.

8 Prove that any group of prime order is cyclic.
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REVIEW SET A

SETS, RELATIONS, AND GROUPS 107

1 Suppose A = fa, b, c, d, e, fg and B = fc, e, g, hg. Find:

a A [ B b AnB c A¢B

2 If A = f1, 2, 3g and B = f2, 4g, find A £ B.

3 Prove that (A \ B) £ (C \ D) = (A £ C) \ (B £ D).

4 A relation R in f0, 1, 2, 3, 4, 5g is such that xRy if and only if jx ¡ yj < 3.

a Write R as a set of ordered pairs.

b Is R i reflexive ii symmetric iii transitive?

c Is R an equivalence relation? Explain your answer.

5 Determine whether each of the following functions is: i an injection ii a surjection.

a f : R ! R , f(x) = 2x3 + 3x ¡ 1 b f : Z ! Z +, f(x) = x2

c f : C ! R + [ f0g, f(z) = jzj d f : Z + ! R +, f(x) =
p
x

¤ 1 2 3 4

1 2 1 3 1

2 3 2 4 2

3 4 1 3 2

4 1 4 2 1

6 A Cayley table for the binary operation ¤ is shown alongside.

a Find:

i 3 ¤ 4 ii 2 ¤ (1 ¤ 3) iii (2 ¤ 1) ¤ 3

b Is the Cayley table a Latin square? Explain the significance of

your answer.

7 Let f =

µ
1 2 3 4
1 3 4 2

¶
and g =

µ
1 2 3 4
2 3 1 4

¶
be permutations.

a Find: i gf ii fg iii f¡1 iv g¡1

b Find n such that fn =

µ
1 2 3 4
1 2 3 4

¶
.

8 Consider the group fG, +ng where G is the set containing the n residue classes modulo n.

Which elements are generators of fG, +ng when:

a n = 3 b n = 5 c n = 6?

9 Let p = c1c2::::cr be a permutation in Sn, n 2 Z +, where c1, c2, ...., cr are disjoint cycles.

Define a relation R on f1, 2, ...., ng by

xRy , pa(x) = y for some a 2 Z +

, it is possible to map x to y using permutation p (more than once if necessary).

a Prove that R is an equivalence relation. b Describe the equivalence classes of R.

c For p = (1 2)(3 6 8)(4 5) 2 S8, write down explicitly the equivalence classes defined

by R.

10 A system of elements with binary operation ¤ is called a semigroup if and only if the system

is closed under the operation and ¤ is associative.

Show that the following are all semigroups, and indicate which are also groups.

a ¤ 1 2

1 1 2

2 1 2

b ¤ 1 2

1 1 2

2 2 1

c ¤ 1 2 3

1 1 2 3

2 2 3 1

3 3 1 2

d ¤ 1 2 3

1 1 2 3

2 3 2 3

3 3 2 3
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REVIEW SET B

108 SETS, RELATIONS, AND GROUPS

11 Suppose fG, ¤g is a group with identity element e, and fG0, ±g is a group with identity

element e0. Let S = G £ G0. Define the “product” of pairs of elements (a, a0), (b, b0) 2 S

by (a, a0)(b, b0) = (a ¤ b, a0 ± b0).

a Prove that S is a group under the “product” operation.

b Show that S1 = f(g, e0) j g 2 Gg is a subgroup of S under the “product” operation.

12 Explain why a non-Abelian group must have at least six elements.

13 Let G = f(x, y) j x 2 Z , y 2 Q g and define the composition of points by

(a, b) ¤ (c, d) = (a + c, 2cb + d).

a Prove that G forms a group under ¤.

b Is fG, ¤g Abelian?

c Do the following sets with the operation ¤ form subgroups of G?

i H1 = f(a, 0) j a 2 Z g ii H2 = f(0, b) j b 2 Q g

14 Consider groups G1 : fR n f1g, ¤g where a ¤ b = a + b ¡ ab, and G2 : fR +, £g.

Define f : G1 ! G2 by f(a) = ja ¡ 1j.
a Show that f is a homomorphism.

b Determine whether f is:

i an injection ii a surjection iii an isomorphism.

15 Let f : S4 ! S4 be defined by f(p) = p2 for all permutations p 2 S4, the symmetric

group of degree 4.

a Find two permutations p, q 2 S4 such that pq 6= qp.

b Explain clearly why f is not a homomorphism.

1 Consider the sets A = f0, 3, 6, 9, 12g, B = f1, 2, 3, 4, 5, 6g, C = f2, 4, 6, 8, 10g, and

U = f0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13g. Find:

a A \ (B [ C) b A¢(BnC) c B0 [ C0

d A [ (B¢C) e A0 \ (B0¢C0)

In each case, illustrate the set on a Venn diagram.

2 Prove De Morgan’s rule (A \ B)0 = A0 [ B0.

3 Let R be a relation on Z such that xRy if and only if x ¡ y is divisible by 6.

a Show that R is an equivalence relation. b Describe the equivalence classes.

4 Let R be a relation on R £ R such that for (a, b), (x, y) 2 R £ R ,

(a, b)R(x, y) if and only if jxj + jyj = jaj + jbj.
a Show that R is an equivalence relation.

b Describe how R partitions R £ R , and state the equivalence classes.
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SETS, RELATIONS, AND GROUPS 109

5 Determine which of the following is a bijection. If it is a bijection, state f¡1(x).

a f : R ! R , f(x) = x3 + 5 b f : R + ! R , f(x) = lnx

c f : Z ! Z , f(x) = 2x d f : R ! R , f(x) = 2x

e f : R ! [¡1, 1], f(x) = sinx

6 For each of the given operations on R , answer the following:

i Is the operation associative? ii Is the operation commutative?

iii If possible, find the identity element.

iv If possible, find the inverse of a, for a 2 R .

a a ¤ b = ab + 2 b a ¤ b = ja + bj c a ¤ b = jabj
7 Find the order of each of the following permutations in S4, and rewrite each permutation in

cycle notation:

a

µ
1 2 3 4
3 1 2 4

¶
b

µ
1 2 3 4
1 2 4 3

¶
c

µ
1 2 3 4
2 1 4 3

¶

¤ I A B C D

I I A B C D

A A I D B C

B B C I D A

C C D A I B

D D B C A I

8 The Cayley table for a set S = fI, A, B, C, Dg under

the operation ¤ is shown. Determine, with proof, which of

the group axioms hold.

9 a Show that f1, 3, 5, 9, 11, 13g under £14 multiplication modulo 14, is a group.

b State the order of each element of the group in a.

c Is the group in a cyclic? If so find the generators of the group.

10 Suppose fG, ¤g is a group with identity e. If each element a 2 G, a 6= e, has order 2,

prove that fG, ¤g is an Abelian group.

11 Let fA, +mg be a group where A = f0, 1, 2, ...., (m ¡ 1)g.

Let fB, +m2g be a group where B = f0, 1, 2, ...., (m2 ¡ 1)g.

Prove that G = f(a, b) j a 2 A, b 2 Bg is a non-Abelian group of order m3 under the

operation ¤ defined by (a, b) ¤ (x, y) = (a + x (modm), b + y + mxb (modm2)).

12 Consider a group fG, ¤g for which jGj is an odd prime number. Prove that there is only one

element which is its own inverse.

14 Consider the two isomorphisms f and g, where

f : fR +, £ g ! fR +, £ g is defined by f(x) = x2, and

g : fR +, £ g ! fR , + g is defined by g(x) = lnx.

a Find: i f ± g ii g ± f

b Is f ± g an isomorphism from fR +, £g to fR +, £g?

c Is g ± f an isomorphism from fR +, £g to fR , +g?

13 Let fG, ¤g be a group, and let fH1, ¤g and fH2, ¤g be subgroups of fG, ¤g.

Determine whether fH1 [ H2, ¤g is a subgroup of fG, ¤g.
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REVIEW SET C

110 SETS, RELATIONS, AND GROUPS

15 For each of the given groups, determine whether the function f is a homomorphism. If it is:

i find Ker(f) and R(f) ii determine whether f is an isomorphism.

a f : fR , +g ! fR +, £g, where f(x) = 3x.

b Let G = hpi for permutation p = (1 4 3 2).

Define f : G ! fC n f0g, £g by f(pm) = im, m 2 Z + [ f0g.

1 Find the power set P (A) if A = f1, 2g. Determine whether P (A) forms a group under:

a \ b [
2 Prove that (AnB) £ C = (A £ C) n (B £ C).

3 Let R be a relation on (R n f0g) £ R + such that for (a, b), (x, y) 2 (R n f0g) £ R +,

(a, b)R(x, y) if and only if bx2 = a2y.

a Show that R is an equivalence relation.

b Describe how R partitions (R n f0g) £ R +, and state the equivalence classes.

4 Is the following argument valid? Explain your answer.

Consider a symmetric and transitive relation R on a set S.

If xRy then yRx for all x, y 2 S fsymmetryg
If xRy and yRx then xRx for all x, y 2 S ftransitivityg

Since xRx, R must be reflexive.

Therefore a symmetric and transitive relation on a set is always an equivalence relation.

5 Let f1(x) = x, f2(x) = ¡x, f3(x) =
1

x
, and f4(x) = ¡ 1

x
.

a Show that ff1, f2, f3, f4g is a group under the composition of functions. Denote this

group G.

b Find the order of each element in G.

c Is G a cyclic group? Explain your answer.

d State a group of order 4, distinct from G, but which is isomorphic to G.

6 For each of the given operations, answer the following:

i Is the operation associative?

ii Is the operation commutative?

iii If possible, find the identity element.

iv If possible, find the inverse of an element a.

a a ± b =
1

ab
on R n f0g b a ± b = (a + 2)(b + 3) on R

c a ± b = a + b + 3ab on R

7 a Write down all the permutations in S3 in cycle notation.

b Find p¡1 for i p = (2 3) ii p = (1 3 2)

c Find the order of all permutations in S3.
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REVIEW SET D

SETS, RELATIONS, AND GROUPS 111

8 a Show that the set f1, 7, 9, 15g forms a group under £16 multiplication modulo 16.

b State the order of each element of the group in a.

c Is the group in a cyclic? Explain your answer.

9 Suppose S = f(a, b) j a, b 2 R g, and define the operation ¤ by (a, b) ¤ (c, d) = (ac, bc+ d).

a Is ¤ associative? b Is ¤ commutative?

c Is there an identity element for ¤ in S? d Does each element have an inverse?

e Is fS, ¤g a group?

10 Let fG, ¤g be a finite group of order n with identity e. Explain why an = e for all a 2 G.

11 Let fG, ¤g be a finite group of order n with identity e. If H 6= ? is a subset of G, and

a ¤ b 2 H for all a, b 2 H, prove that fH, ¤g is a group.

12 Consider the group fG, £g where G = f1, ¡1, i, ¡ig. S = f1, ¡1g and T = fi, ¡1g
are subsets of G.

Under multiplication, determine whether each of S or T is a subgroup of fG, £g.

13 Prove that a cyclic group of order m, m 2 Z +, is isomorphic to the additive group of residue

classes modulo m.

14 Suppose f : fG, ¤g ! fH, ±g is a homomorphism of finite groups.

Prove that f is an isomorphism if and only if Ker(f) = feGg, the identity in G.

15 Let p = (1 5 3 4 2), q = (1 3 2), r = (1 4 5) be permutations in S5, the symmetric group of

degree 5.

Let G = hpi be the cyclic subgroup of S5 generated by p.

a List the elements of the only left coset of G in S5 which is a subgroup of S5.

b How many distinct left cosets does G have in S5?

c Find the permutation q¡1r.

d Hence or otherwise determine whether the cosets qG and rG are disjoint.

16 Suppose f : fG, ¤g ! fH , ±g is a homomorphism of groups, and that G and H have identities

eG and eH respectively.

Using this theorem and the subgroup test, prove that:

a Ker(f) is a subgroup of G b R(f) is a subgroup of H.

1 Use Venn diagrams to illustrate the following distributive laws:

a A \ (B [ C) = (A \ B) [ (A \ C) b A [ (B \ C) = (A [ B) \ (A [ C)

2 a Find the power set P (A) if A = f1, 2, 3g.

b Determine whether P (A) forms a group under:

i \ ii [

We have a theorem that states that eG 2 Kerffg and that f(a¡1) = f(a)¡1 for all a 2 G.
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112 SETS, RELATIONS, AND GROUPS

3 Let R be a relation on R £ R such that for (a, b), (x, y) 2 R £ R ,

(a, b)R(x, y) if and only if x2 + y2 = a2 + b2.

a Show that R is an equivalence relation.

b Describe how R partitions R £ R , and state the equivalence classes.

4 Let R be a relation on Z £ Z such that for (a, b), (x, y) 2 Z £ Z ,

(a, b)R(x, y) if and only if y = b.

a Show that R is an equivalence relation.

b Describe how R partitions Z £ Z , and state the equivalence classes.

5 Show that the set ff1, f2, f3, f4, f5, f6g is a group under composition of functions where

f1(x) = x, f2(x) =
1

1¡ x
, f3(x) =

x¡ 1

x
, f4(x) =

1

x
, f5(x) = 1 ¡ x, and

f6(x) =
x

x¡ 1
.

6 Determine whether the binary operation ¤ on R is associative, where ¤ is defined by:

a a ¤ b =
a+ b

a2
b a ¤ b = 2a+b c a ¤ b = a + b ¡ 3ab

7 If p =

µ
1 2 3 4 5 6
2 6 1 4 3 5

¶
, find in cycle notation: a p¡1 b p6

8 Determine whether each of the following Cayley tables defines a group:

a ¤ a b c d e

a a b c d e

b b c d e a

c c d e a b

d d e a b c

e e a b c d

b ¤ a b c d e

a a b c d e

b b e d a c

c c a b e d

d d c e b a

e e d a c b

9 An operation ¤ on S = f0, 1, 2, 3, 4, 5g is defined by a ¤ b = a £6 (a + b), where £6 is

multiplication modulo 6.

a Construct a Cayley table for this operation on the given set.

b Is the table a Latin square? c Is fS, ¤g a group?

10 Consider the group fA, +mg where A = f0, 1, 2, ...., (m¡1)g and +m is addition modulo m.

a Prove that fG, ¤g is a group where G = f(a, b, c) j a, b, c 2 Ag and ¤ is defined by

(a, b, c) ¤ (x, y, z) = (a + x(modm), b + y(modm), c + z ¡ xb(modm)).

b Is the group G Abelian?

c State the order of the group G.

11 Consider a set G under the associative operation ¤, which is closed on G. Suppose there are

unique solutions x, y 2 G for the equations x ¤ a = b and a ¤ y = b for each chosen

a, b 2 G. Prove that fG, ¤g is a group.

12 Show that the rational numbers of the form
2a+ 1

2b+ 1
where a, b 2 Z , form a subgroup of the

group fQ n f0g, £g.
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SETS, RELATIONS, AND GROUPS 113

13 a For each of the following sets, construct a Cayley table under the given operation.

i f1, 9, 11, 19g under multiplication modulo 20

ii f1, 3, 7, 9g under multiplication modulo 20

iii f1, 9, 13, 17g under multiplication modulo 20

b Show that each set in a forms a group under the given operation.

c Are any pairs of the groups in a isomorphic?

14 a Consider the subgroup f2Z , +g of the group fZ , +g, where

G = 2Z = f...., ¡4, ¡2, 0, 2, 4, ....g is the set of all even integers.

i Find the left cosets 0G and 1G.

ii How many distinct left cosets does G have in fZ , +g?

iii Hence or otherwise, explain why the set of odd integers does not form a subgroup of

fZ , +g.

b Let n 2 Z + be any fixed integer.

Let G be the subgroup fnZ , +g of fZ , +g, where nZ is the set of all integer multiples

of n.

i Find the left cosets 0G, 1G, ...., and (n ¡ 1)G.

ii How many distinct left cosets does G have in fZ , +g?

iii Hence or otherwise, explain why the residue classes modulo n, [0], [1], ...., [n ¡ 1],

partition the set of integers.

IB HL OPT

Sets Relations Groupsmagentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_03\113IB_HL_OPT-SRG_03.cdr Thursday, 1 August 2013 12:33:33 PM BRIAN



MATHEMATICAL PARADOXTHEORY OF KNOWLEDGE

114 SETS, RELATIONS, AND GROUPS

In mathematics, a naive theory is one which is described using natural language rather than rigidly

defined symbols. Such theories are often used when a mathematical principle is first investigated,

before the boundaries of the principle are fully investigated and the theory formalised. Naive theories

are often sufficient for everyday usage of the principles, but may fail under certain specific conditions.

At the end of the 19th century, German mathematician Georg Cantor (1845 - 1918) described a

naive set theory, and indeed is considered the inventor of the set theory we use today. However,

the English mathematician Bertrand Russell showed in 1901 that the naive set theory leads to a

contradiction known as Russell’s paradox:

Let R be the set of all sets that are not members of themselves.

If R is a member of itself, it would contradict its own definition as a set containing all sets that

are not members of themselves.

If R is not a member of itself, it would qualify as a member of itself by the same definition.

1 Does Russell’s paradox present a problem for the everyday application of set theory?

2 What does Russell’s paradox teach us about naive theories in mathematics?

3 In what ways is an axiomatic theory an advancement from naive theory?

Kurt Friedrich Gödel was born in 1906 in Brno, in what is now the Czech Republic. In 1931 Gödel

published two famous “incompleteness” theorems, the first of which was summarised by Kleene1 as:

Any effectively generated theory capable of expressing elementary arithmetic cannot be both

consistent and complete. In particular, for any consistent, effectively generated formal theory

that proves certain basic arithmetic truths, there is an arithmetical statement that is true, but not

provable in the theory.

4 Is Russell’s paradox an example of Gödel’s first incompleteness theorem?

5 What does Gödel’s first incompleteness theorem tell us about the nature of mathematics?

How is mathematics believable if cannot be both consistent and complete?

In 1989, George Boolos proved Gödel’s first incompleteness theorem using a formalised version of

the Berry paradox. This paradox is self-referential, and arises from an expression like “the smallest

positive integer not definable in under eleven words.” Since this expression contains only 10 words,

the smallest positive integer not definable by any other expression of less than eleven words, would

be defined by this expression, thus leaving the expression self-contradictory.

6 How can a paradox be used in a mathematical proof?

1 Stephen Cole Kleene, 1967, Mathematical Logic.
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115 APPENDICES

Greek mathematicians more than 2000 years ago realised that progress in mathematical thinking could

be brought about by conscious formulation of the methods of abstraction and proof.

By considering a few examples, one might notice a certain common quality or pattern from which one

could predict a rule or formula for the general case. In mathematics this prediction is known as a

conjecture. Mathematicians love to find patterns, and try to understand why they occur.

Experiments and further examples might help to convince you that the conjecture is true. However,

problems will often contain extra information which can sometimes obscure the essential detail,

particularly in applied mathematics. Stripping this away is the process of abstraction.

a b a2 b2

1 2 1 4

3 5 9 25

4 5 16 25

5 7 25 49

6 9 36 81

For example, by considering the given table of values one may conjecture:

“If a and b are real numbers then a < b implies that a2 < b2.”

However, on observing that ¡2 < 1 but (¡2)2 6< 12 we have a

counter-example.

In the light of this we reformulate and refine our conjecture:

“If a and b are positive real numbers then a < b implies a2 < b2.”

The difficulty is that this process might continue with reformulations, counter-examples, and revised

conjectures indefinitely. At what point are we certain that the conjecture is true? A proof is a flawless

logical argument which leaves no doubt that the conjecture is indeed a truth. If we have a proof then the

conjecture can be called a theorem.

Mathematics has evolved to accept certain types of arguments as valid proofs. They include a mixture

of both logic and calculation. Generally mathematicians like elegant, efficient proofs. It is common not

to write every minute detail. However, when you write a proof you should be prepared to expand and

justify every step if asked to do so.

We have already examined in the HL Core text, proof by the principle of mathematical induction.

Now we consider other methods.

DIRECT PROOF

In a direct proof we start with a known truth and by a succession of correct deductions finish with the

required result.

Example 1: Prove that if a, b 2 R then a < b ) a <
a+ b

2

Proof: a < b ) a

2
<

b

2
fas we are dividing by 2 which is > 0g

) a

2
+

a

2
<

a

2
+

b

2
fadding

a

2
to both sidesg

) a <
a+ b

2

Sometimes it is not possible to give a direct proof of the full result and so the different possible cases

(called exhaustive cases) need to be considered and proved separately.

APPENDIX: METHODS OF PROOF
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APPENDICES 116

Example 2: Prove the geometric progression: For n 2 Z , n > 0,

1 + r1 + r2 + :::: + rn =

8<
:

rn+1 ¡ 1

r ¡ 1
, r 6= 1

n + 1, r = 1

Proof: Case r = 1: 1 + r1 + r2 + :::: + rn

= 1 + 1 + 1 + :::: + 1 fn + 1 timesg
= n + 1

Case r 6= 1: Let Sn = 1 + r1 + r2 + :::: + rn.

Then rSn = r1 + r2 + r3 + :::: + rn+1

) rSn ¡ Sn = rn+1 ¡ 1 fafter cancellation of termsg
) (r ¡ 1)Sn = rn+1 ¡ 1

) Sn =
rn+1 ¡ 1

r ¡ 1
fdividing by r ¡ 1 since r 6= 1g

Example 3: Alice looks at Bob and Bob looks at Clare. Alice is married, but Clare is not. Prove

that a married person looks at an unmarried person.

Proof: We do not know whether Bob is married or not, so we consider the different (exhaustive)

cases:

Case: Bob is married. If Bob is married, then a married person (Bob) looks at an

unmarried person (Clare).

Case: Bob is unmarried. If Bob is unmarried, then a married person (Alice) looks at an

unmarried person (Bob).

Since we have considered all possible cases, the full result is proved.

EXERCISE

1 Let I =
p

2, which is irrational. Consider II and II
I

, and hence prove that an irrational number

to the power of an irrational number can be rational.

PROOF BY CONTRADICTION (AN INDIRECT PROOF)

In proof by contradiction we deliberately assume the opposite to what we are trying to prove. By a

series of correct steps we show that this is impossible, our assumption is false, and hence its opposite is

true.
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117 APPENDICES

Example 4: Consider Example 1 again but this time use proof by contradiction:

Prove that if a, b 2 R then a < b ) a <
a+ b

2
.

Proof (by contradiction):

For a < b, suppose that a >
a+ b

2
.

) 2a > 2
³
a+ b

2

´
fmultiplying both sides by 2g

) 2a > a + b

) a > b fsubtracting a from both sidesg
which is false.

Since the steps of the argument are correct, the supposition must be false and the alternative,

a <
a+ b

2
must be true.

Example 5: Prove that the solution of 3x = 8 is irrational.

Proof (by contradiction):

Suppose the solution of 3x = 8 is rational, or in other words, that x is rational. Notice that

x > 0.

) x =
p

q
where p, q 2 Z , q 6= 0 fand since x > 0, integers p, q > 0g

) 3
p

q = 8

)
µ

3
p

q

¶q

= 8q

) 3p = 8q

which is impossible since for the given possible values of p and q, 3p is always odd and 8q is

always even. Thus, the assumption is false and its opposite must be true. Hence x is irrational.

Example 6: Prove that no positive integers x and y exist such that x2 ¡ y2 = 1.

Proof (by contradiction):

Suppose x, y 2 Z + exist such that x2 ¡ y2 = 1.

) (x + y)(x ¡ y) = 1

) x + y = 1 and x ¡ y = 1| {z }
case 1

or x + y = ¡1 and x ¡ y = ¡1| {z }
case 2

) x = 1, y = 0 (from case 1) or x = ¡1, y = 0 (from case 2)

Both cases provide a contradiction to x, y > 0.

Thus, the supposition is false and its opposite is true.

There do not exist positive integers x and y such that x2 ¡ y2 = 1.

Indirect proof often seems cleverly contrived, especially if no direct proof is forthcoming. It is perhaps

more natural to seek a direct proof for the first attempt to prove a conjecture.
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ERRORS IN PROOF

One must be careful not to make errors in algebra or reasoning. Examine carefully the following examples.

Example 7: Consider Example 5 again: Prove that the solution of 3x = 8 is irrational.

Invalid argument: 3x = 8

) log 3x = log 8

) x log 3 = log 8

) x =
log 8

log 3
where both log 8 and log 3 are irrational.

) x is irrational.

The last step is not valid. The argument that an irrational divided by an irrational is always

irrational is not correct. For example,
p

2p
2

= 1, and 1 is rational.

Dividing by zero is not a valid operation.
a

0
is not defined for any a 2 R , in particular 0

0 6= 1.

Example 8: Invalid “proof” that 5 = 2

0 = 0

) 0 £ 5 = 0 £ 2

) 0£ 5

0
=

0£ 2

0
fdividing through by 0g

) 5 = 2, which is clearly false.

This invalid step is not always obvious, as illustrated in the following example.

Example 9: Invalid “proof” that 0 = 1:

Suppose a = 1

) a2 = a

) a2 ¡ 1 = a ¡ 1

) (a + 1)(a ¡ 1) = a ¡ 1

) a + 1 = 1 .... (¤)

) a = 0

So, 0 = 1

The invalid step in the argument is (¤) where we divide both sides by a ¡ 1.

Since a = 1, a ¡ 1 = 0, and so we are dividing both sides by zero.

Another trap to be avoided is to begin by assuming the result we wish to prove is true. This readily leads

to invalid circular arguments.
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119 APPENDICES

Example 10: Prove without decimalisation that
p

3 ¡ 1 > 1p
2

.

Invalid argument:
p

3 ¡ 1 > 1p
2

) (
p

3 ¡ 1)2 >
³

1p
2

´2
fboth sides are > 0, so we can square themg

) 4 ¡ 2
p

3 > 1
2

) 7
2 > 2

p
3

) 7 > 4
p

3

) 72 > 48 fsquaring againg
) 49 > 48 which is true.

Hence
p

3 ¡ 1 > 1p
2

is true.

Although
p

3 ¡ 1 > 1p
2

is in fact true, the above argument is invalid because we began by

assuming the result.

A valid method of proof for
p

3 ¡ 1 > 1p
2

can be found by either:

² reversing the steps of the above argument, or by

² using proof by contradiction (supposing
p

3 ¡ 1 6 1p
2

).

It is important to distinguish errors in proof from a false conjecture.

Consider the table alongside, which shows values of n2 ¡ n + 41 for various

values of n 2 N .

From the many examples given, one might conjecture:

“For all natural numbers n, n2 ¡ n + 41 is prime.”

This conjecture is in fact false.

For example, for n = 41, n2 ¡ n + 41 = 412 is clearly not prime.

n n2 ¡ n + 41

1 41

2 43

3 47

4 53

5 61

6 71

7 83

8 97

9 113

10 131

11 151

12 173

13 197
¢ ¢ ¢ ¢ ¢ ¢
30 911
¢ ¢ ¢ ¢ ¢ ¢
99 9743
¢ ¢ ¢ ¢ ¢ ¢

It takes only one

counter-example to prove a

conjecture is false.
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IMPLICATIONS AND THEIR CONVERSE

If .... then ....

Many statements in mathematics take the form of an implication “If A then B”, where A and B are

themselves statements. The statement A is known as the hypothesis. The statement B is known as the

conclusion.

Implications can be written in many forms in addition to “If A then B”. For example, the following all

have the same meaning:

A

8>>><
>>>:

implies

so

hence

thus

therefore

9>>>=
>>>; B.

Given a statement of the form “If A then B”, we can write a converse statement “If B then A”.

If we know the truth, or otherwise, of a given statement, we can say nothing about the truth of the

converse. It could be true or false.

A statement and its converse are said to be (logically) independent.

For example, suppose x is an integer.

² The statement “If x is odd, then 2x is even” is true, but its converse “If 2x is even, then x is

odd” is false.

² The statement “If 2x is even, then x is odd” is false, but its converse “If x is odd, then 2x is

even” is true.

² The statement “If x > 1, then lnx > 0” is true, and its converse “If lnx > 0, then x > 1”

is also true.

² The statement “If x = 5, then x2 = 16” is false, and its converse “If x2 = 16, then x = 5”

is also false.

EXERCISE

Prove or disprove:

1 If x is rational then 2x 6= 3.

2 If 2x 6= 3 then x is rational.

EQUIVALENCE

Some conjectures with two statements A and B involve logical equivalence or simply equivalence.

We say A is equivalent to B, or A is true if and only if B is true.

The phrase “if and only if” is often written as “iff” or ,.

A , B means A ) B and B ) A
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121 APPENDICES

In order to prove an equivalence, we need to prove both implications: A ) B and B ) A.

For example: x2 = 9 , x = 3 is a false statement.

x = 3 ) x2 = 9 is true

but x2 = 9 6) x = 3 as x may be ¡3.

Example 11: Prove that (n + 2)2 ¡ n2 is a multiple of 8 , n is odd.

Proof: ()) (n + 2)2 ¡ n2 is a multiple of 8

) n2 + 4n + 4 ¡ n2 = 8a for some integer a

) 4n + 4 = 8a

) n + 1 = 2a

) n = 2a ¡ 1

) n is odd.

(() n is odd

) n = 2a ¡ 1 for some integer a

) n + 1 = 2a

) 4n + 4 = 8a

) (n2 + 4n + 4) ¡ n2 = 8a

) (n + 2)2 ¡ n2 is a multiple of 8.

In the above example the ()) argument is clearly reversible to give the (() argument. However, this is

not always the case.

Example 12: Prove that for all x 2 Z +, x is not divisible by 3 , x2 ¡ 1 is divisible by 3.

Proof: ()) x is not divisible by 3

) either x = 3k + 1 or x = 3k + 2 for some k 2 Z + [ f0g
) x2 ¡ 1 = 9k2 + 6k or 9k2 + 12k + 3

= 3(3k2 + 2) or 3(3k2 + 4k + 1)

) x2 ¡ 1 is divisible by 3.

(() x2 ¡ 1 is divisible by 3

) 3 j x2 ¡ 1

) 3 j (x + 1)(x ¡ 1)

) 3 j (x + 1) or 3 j (x ¡ 1) fas 3 is a prime numberg
) 3 - x

or in other words, x is not divisible by 3.
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NEGATION

For any given statement A, we write not A or :A to represent the negation of the statement A.

For example: A :A
x > 0 x 6 0

x is prime x is not prime

x is an integer x is not an integer

For x 2 R : x is rational x is irrational

For z 2 C : z is real z = a + bi, a, b 2 R , b 6= 0

For x 2 Z + [ f0g: x is a multiple of 3 x is not a multiple of 3
or

x = 3k + 1 or 3k + 2 for k 2 Z + [ f0g

PROOF OF THE CONTRAPOSITIVE

To prove the statement “If A then B”, we can provide a direct proof, or we can prove the logically

equivalent contrapositive statement “If not B, then not A” which we can also write as “If :B,

then :A”.

For example, the statement “If it is Jon’s bicycle, then it is blue”

is logically equivalent to “If that bicycle is not blue, then it is not Jon’s”.

Example 13: Prove that for a, b 2 R , “ab is irrational ) either a or b is irrational”.

Proof using contrapositive:

a and b are both rational ) a =
p

q
and b =

r

s
where p, q, r, s 2 Z , q 6= 0, s 6= 0

) ab =

µ
p

q

¶³
r

s

´
=

pr

qs
fwhere qs 6= 0, since q, s 6= 0g

) ab is rational fsince pr, qs 2 Z g
Thus ab is irrational ) either a or b is irrational.

Example 14: Prove that if n is a positive integer of the form 3k + 2, k > 0, k 2 Z , then n is not

a square.

Proof using contrapositive:

If n is a square then

n has one of the forms (3a)2, (3a + 1)2 or (3a + 2)2, where a 2 Z + [ f0g.

) n = 9a2, 9a2 + 6a + 1 or 9a2 + 12a + 4

) n = 3(3a2), 3(3a2 + 2a) + 1 or 3(3a2 + 4a + 1) + 1

) n has the form 3k or 3k + 1 only, where k 2 Z + [ f0g
) n does not have form 3k + 2.

Thus if n is a positive integer of the form 3k + 2, k > 0, k 2 Z , then n is not a square.
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USING PREVIOUS RESULTS

In mathematics we build up collections of important and useful results, each depending on previously

proven statements.

Example 15: Prove the conjecture:

“The recurring decimal 0:9 = 0:999 999 99:::: is exactly equal to 1”.

Proof (by contradiction):

Suppose 0:9 < 1

) 0:9 <
0:9 + 1

2
fWe proved earlier that a < b ) a <

a+ b

2
g

) 0:9 <
1:9

2

½
Ordinary division:

) 0:9 < 0:9 clearly a contradiction

Therefore the supposition is false, and so 0:9 > 1 is true.

Since, 0:9 > 1 is absurd, 0:9 = 1.

Proof (Direct Proof):

0:9 = 0:999 999 99::::

= 0:9 + 0:09 + 0:009 + 0:0009 + ::::

= 0:9
¡
1 + 1

10 + 1
100 + 1

1000 + ::::
¢

= 9
10

µ1P
i=0

¡
1
10

¢i¶

= 9
10

Ã
1

1¡ 1
10

!
fUsing the previously proved Geometric Series

with r = 1
10 and

¯̄
1
10

¯̄
< 1g

= 9
10 £ 10

9

= 1

2 1:999 999 99::::

0:999 999 99::::

¾
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AXIOMS AND OCCAM’S RAZORTHEORY OF KNOWLEDGE

In order to understand complicated concepts, we often try to break them down into simpler

components. But when mathematicians try to understand the foundations of a particular branch

of the subject, they consider the question “What is the minimal set of assumptions from which all

other results can be deduced or proved?” The assumptions they make are called axioms. Whether

the axioms accurately reflect properties observed in the physical world is less important to pure

mathematicians than the theory which can be developed and deduced from the axioms.

Occam’s razor is a principle of economy that among competing hypotheses, the one that makes the

fewest assumptions should be selected.

1 What value does Occam’s razor have in understanding the long-held belief that the world was

flat?

2 Is the simplest explanation to something always true?

3 Is it reasonable to construct a set of mathematical axioms under Occam’s razor?

One of the most famous examples of a set of axioms is given by Euclid in his set of 13 books called

Elements. He gives five axioms, which he calls “postulates”, as the basis for his study of Geometry:

1. Any two points can be joined by a straight line.

2. Any straight line segment can be extended indefinitely in a straight line.

3. Given any straight line segment, a circle can be drawn having the segment as radius and one

endpoint as centre.

4. All right angles are congruent.

5. Parallel postulate: If two lines intersect a third in such a way that the sum of the inner angles

on one side is less than two right angles, then the two lines inevitably must intersect each other

on that side if extended far enough.

4 Is the parallel postulate genuinely an axiom, or can it be proved from the others?

5 What happens if you change the list of axioms or do not include the parallel postulate?

6 What other areas of mathematics can we reduce to a concise list of axioms?
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WORKED SOLUTIONS 125

EXERCISE A.1

1 a S = fa, b, cg and n(S) = 3

b S = f2, 3, 5, 7g and n(S) = 4

c S = f3, 4, 5, 6, 7g and n(S) = 5

d As x2 = ¡9 has no real solution S = ? and n(S) = 0.

e S = f3, 4g on removing repetitions and n(S) = 2

f S = f?g is the set containing the symbol ? and n(S) = 1

2 a S = f1, 2, 3, 4, 5, ...., 98, 99g is finite with cardinality

n(S) = 99.

b There are infinitely many rational numbers in S.

That is, S is an infinite set.

3 a 7 is an integer, ) 7 2 Z is true.

b
p
13 is not rational, )

p
13 2 Q is false.

c If e is exponential e, then e 2 R is true.

d ¡3:5 = ¡7
2

2 Q is true.

e 4:1 = 4 1
9

is not a positive integer

) 4:1 2 Z + is false.

f
p¡2 = i

p
2 is of the form a+ ib where a = 0, b =

p
2

are both real

)
p¡2 2 C is true.

g (
p
3)2 = 3 which is an integer

) (
p
3)2 2 Z is true.

h ¼2 ¼ 9:869 604 :::: can be placed on the real number line

) ¼2 2 R is true.

4 a Sets are equal as repetitions are ignored.

b Sets are equal as the order of listing elements is not important.

c Both sets contain ¡2 and 2 only.

) the sets are equal.

d Both sets are empty sets.

) the sets are equal.

e These sets are not equal as the first set does not contain

2 and 5 which are in the second set.

EXERCISE A.2

1 a P (A) = f?, fpg, fqg, fp, qgg
b P (A) = f?, f1g, f2g, f3g, f1, 2g, f1, 3g, f2, 3g,

f1, 2, 3gg
c P (A) = f?, f0gg

2 a A = fa, e, i, o, ug and B = fs, e, q, u, o, i, ag
) the elements of A are also in B
) A µ B is true.

b A = f0g and B = f g.

) 0 2 A, but 0 =2 B
) A µ B is false.

c A = f3, 5, 9g and B = f2, 3, 5, 7, 11, ....g
) 9 2 A, but 9 =2 B
) A µ B is false.

d 2 2 A fwhen a = 2 and b = 0g and 2 is rational.

Thus 2 =2 B
) A µ B is false.

3 a If x 2 A ) x = a+ 1
2

where a 2 Z

) x = (a+ 1)¡ 1
2

where a 2 Z

) x = b¡ 1
2

, b = a+ 1 2 Z

fif a 2 Z then a+ 1 2 Z g
) x 2 B

If x 2 B ) x = b¡ 1
2

where b 2 Z

) x = (b¡ 1) + 1
2

where b 2 Z

) x = a+ 1
2

, a = b¡ 1 2 Z

fif b 2 Z then b¡ 1 2 Z g
) x 2 A

Thus A µ B and B µ A ) A = B.

b If x 2 A ) x =
p
y where y > 0

) x > 0

fpy > 0 by definition, but y > 0 giveng
) x 2 B

If x 2 B ) x > 0

) x =
p
x2

) x =
p
y for y = x2 2 R +

) x 2 A

Thus A µ B and B µ A ) A = B.

4 a In A, x is even

) x+ 1 is odd

) (x+ 1)2 = 1, 9, 25, 49, ....

) y = 1, 9, 25, 49, ....

) A = f1, 9, 25, 49, ....g
Thus A µ B as B = f1, 3, 5, 7, 9, 11, ....g
However A 6= B.

b In A, y 2 C
) y = a+ ib where a, b 2 R

) yy¤ = (a+ ib)(a¡ ib) = a2 + b2

) x = yy¤ is real and > 0

) A µ B

However A 6= B fB includes negativesg
5 Pm is: n(P (A)) = 2m where n(A) = m for all

m 2 Z + [ f0g.

Proof by induction (on m)

(1) If m = 0 ) n(A) = 0 then A = ?

) P (A) = f?g
) n(P (A)) = 1

) n(P (A)) = 20

) P0 is true.

(2) If Pk is true, n(P (A)) = 2k, n(A) = k.

Consider set B = felements of A, bg where b =2 A.

Then n(B) = n(A) + 1 = k + 1 and

P (B) = felements of P (A), fbg [ S for each S 2 P (A)g
) n(P (B)) = 2£ n(P (A))

= 2£ 2k

= 2k+1

Thus as P0 is true and the truth of Pk ) the truth of Pk+1,

Pm is true. fPrinciple of mathematical inductiong

EXERCISE A.3

1 a f0, 1, 2, 3, 4, 5, 7g b f7g c ? d f1, 3, 7g
e f1, 3, 7g f f5, 6, 7, 8, 9g g f6, 8, 9g h f6, 8, 9g
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2 a b

c d not possible

e f

g not possible

3 Consider the Venn diagram

n(A [B) = a+ b+ c

n(A0 \B) = c

If A [B = A0 \B

then n(A [B) = n(A0 \B)

) a+ b+ c = c

) a+ b = 0, a > 0, b > 0

) a = b = 0

) n(A) = 0

a contradiction to ‘A is non-empty’

Thus A [B = A0 \B is not possible.

4 To prove: A \B = A , A µ B

() ) Suppose A \B = A

If A = ?, we know A µ B

If A 6= ? we let x 2 A, say

) x 2 A \B fA = A \B, giveng
) x 2 B

So, x 2 A ) x 2 B

) A µ B

(( ) Suppose A µ B

If A = ?, A \B = ? \B = ? = A

) A \B = A

If A 6= ? and x 2 A
As A µ B, then x 2 B also

) x 2 A \B

) x 2 A ) x 2 A \B

Hence A µ A \B .... (1)

If A 6= ? and x 2 A \B then x 2 A

) x 2 A \B ) x 2 A

) A \B µ A .... (2)

From (1) and (2), A \B = A

Thus A \B = A , A µ B.

5 A and B are disjoint, and A[B = U ) A and B partition U

We need to show that B µ A0 and A0 µ B

Proof: If x 2 A0 ) x =2 A

) x 2 B fA and B partition U g
) A0 µ B .... (1)

If x 2 B ) x =2 A

) x 2 A0

) B µ A0 .... (2)

From (1) and (2), B = A0.

6 a n(A) + n(B)¡ n(A \B)

= (a+ b) + (b+ c)¡ b

= a+ b+ c

= n(A [B)

b n(A [B) = n(U )¡ n((A [B)0)
= 30¡ 6

= 24

From a, 24 = 16 + 15¡ n(A \B)

) n(A \B) = 7

) 7 play both sports.

7 As A µ B, if x 2 A then x 2 B

As B µ C, if x 2 B then x 2 C

Thus if A µ B and B µ C then

x 2 A ) x 2 B ) x 2 C

Thus A µ C.

EXERCISE A.4

1 a fo, n, u, a, c, eg b fn, ag
c fc, j, g, t, eg d fc, o, j, u, g, t, eg
e fc, o, j, u, g, t, eg f fo, n, u, ag

2 a b

c d

e

3 a () ) Let x 2 (A [B) [ C

) x 2 A [B or x 2 C

) x 2 A or B or C

) x 2 A or B [ C

) x 2 A [ (B [ C)

Thus (A [B) [ C µ A [ (B [ C) .... (1)

(( ) Let x 2 A [ (B [ C)

) x 2 A or x 2 (B [ C)

) x 2 A or B or C

) x 2 A [B or x 2 C

) x 2 (A [B) [ C

Thus A [ (B [ C) µ (A [B) [ C .... (2)

From (1) and (2), (A [B) [ C = A [ (B [ C)

A B

U

A

B

U

A B

U

A

B

U

A B

U

A B

U

(a) (b) (c)

(d)

A B

U

A B

U

A B

U

A B

U

A B

U

A B

U

(a) (b) (c)

(d)
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WORKED SOLUTIONS 127

b () ) Let x 2 A \ (B [ C)

) x 2 A and x 2 B or x 2 C

) x 2 A and x 2 B or x 2 A and x 2 C

) x 2 A \B or x 2 A \ C

) x 2 (A \B) [ (A \ C)

Thus A \ (B [ C) µ (A \B) [ (A \ C) .... (1)

(( ) Let x 2 (A \B) [ (A \ C)

) x 2 A \B or x 2 A \ C

) x 2 A and B or x 2 A and C

) x 2 A and x 2 B [ C

) x 2 A \ (B [ C)

Thus (A \B) [ (A \ C) µ A \ (B [ C) .... (2)

From (1) and (2), A \ (B [ C) = (A \B) [ (A \ C)

c (A [B) \ (A0 [B)

= (B [A) \ (B [A0) fCommutative lawg
= B [ (A \A0) fDistributive lawg
= B [? fComplement lawg
= B fIdentity lawg
or

() ) Let x 2 (A [B) \ (A0 [B)

) x 2 A [B and x 2 A0 [B

Now suppose x =2 B then x 2 A and x 2 A0

which is a contradiction as A \A0 = ?
) x 2 B

Hence (A [B) \ (A0 [B) µ B .... (1)

(( ) Let x 2 B

) x 2 A [B and x 2 A0 [B

) x 2 (A [B) \ (A0 [B)

) B µ (A [B) \ (A0 [B) .... (2)

From (1) and (2), (A [B) \ (A0 [B) = B.

d () ) Let x 2 (A \B)0

) x =2 A \B

) x =2 A and B

) x 2 A0 or x 2 B0

) x 2 A0 [B0

Thus (A \B)0 µ A0 [B0 .... (1)

(( ) Let x 2 A0 [B0

) x 2 A0 or x 2 B0

) x =2 A and B

) x =2 A \B

) x 2 (A \B)0

Thus A0 [B0 µ (A \B)0 .... (2)

From (1) and (2), (A \B)0 = A0 [B0.

EXERCISE A.5

1 a i f2, 4g ii ? b i firrational numbersg ii ?

c i f0, 1g ii f4, 5g d i f2, 3, 4g ii f0, 1, 5g
2 a fb, c, dg b f1, 2, 5g c f1, 2, 3, 4, 5, 6g

d f9, 11, 13g
3 a i ii

iii iv

b i ii

iii iv

c i ii

iii iv

4 a b

c d

5 To prove: A¢B = A [B , A \B = ?.

Proof:

(( ) Suppose A \B = ?

If x 2 A¢B, then x 2 A or x 2 B but x =2 A\B

) x 2 A [B

) A¢B µ A [B .... (1)

If x 2 A [B, then x 2 A or x 2 B

) x 2 A or x 2 B but x =2 A \B

fas A \B = ? has no elementsg
) x 2 A¢B

) A [B µ A¢B .... (2)

From (1) and (2), A¢B = A [B.

() ) Suppose A¢B = A [B

A¢B
def
= fx j x 2 A or x 2 B,

but x =2 A \Bg
and A [B

def
= fx j x 2 A or x 2 Bg

So A¢B = A [B ) there are no elements in A \B

) A \B = ?

A B

U

A

B

U

A B

U

A B

U

A B

U

A

B

U

A

B

U

A B

U

A B

U

A

B

U

A B

U

A B

U

A B

U

A B

U

A B

U

A B
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128 WORKED SOLUTIONS

Note: In the general case, if

A¢B = A [B then

n(A¢B) = n(A [B)

) a+ c = a+ b+ c

) b = 0

) A \B = ?

6 To prove: A \ (BnC) = (A \B) n (A \ C).
Proof:

() ) Suppose x 2 A \ (BnC)

) x 2 A and x 2 BnC
) x 2 A

(1)

and x 2 B
(2)

and x =2 C
(3)

From (1) and (2), x 2 A \B

From (1) and (3), x =2 A \ C

Thus x 2 (A \B) n(A \ C)

So, x 2 A \ (BnC) µ (A \B) n(A \ C) .... (4)

(( ) Suppose x 2 (A \B) n(A \ C)

) x 2 A \B and x =2 A \ C

) x 2 A \B and x 2 (A \ C)0

) x 2 A \B and x 2 A0 [ C0

fDe Morgan’s lawg
) x 2 A and x 2 B and x 2 A0 or x 2 C0

) x 2 A and x 2 B and x 2 A0

or x 2 A and x 2 B and x 2 C0

As x 2 A and x 2 A0 is not possible, x 2 A and

x 2 B and x =2 C

) x 2 A \ (BnC)

So, (A \B) n(A \ C) µ A \ (BnC) .... (5)

From (4) and (5), A \ (BnC) = (A \B) n(A \ C)

7 Firstly if A = B then both A¢B and A0¢B0 are both ?.

) the result is trivially true.

We now prove the result if A 6= B.

We need to prove (1) A¢B µ A0¢B0

and (2) A0¢B0 µ A¢B.

(1) Suppose x 2 A¢B

) x 2 (AnB) [ (BnA)

) x 2 AnB or x 2 BnA
) x 2 A and x =2 B

) x =2 A0 and x 2 B0

) x 2 B0nA0

) x 2 B and x =2 A

) x =2 B0 and x 2 A0

) x 2 A0nB0

) x 2 (A0nB0) [ (B0nA0)
) x 2 A0¢B0

So, x 2 A¢B ) x 2 A0¢B0

Thus A¢B µ A0¢B0

(2) Suppose x 2 A0¢B0

) x 2 (A0nB0) [ (B0nA0)
) x 2 A0nB0 or x 2 B0nA0

) x 2 A0 and x =2 B0

) x =2 A and x 2 B

) x 2 BnA

) x 2 B0 and x =2 A0

) x =2 B and x 2 A

) x 2 AnB
) x 2 (AnB) [ (BnA)

) x 2 A¢B

So, x 2 A0¢B0 ) x 2 A¢B

Thus A0¢B0 µ A¢B

Hence from (1) and (2), A¢B = A0¢B0.

EXERCISE B.1

1 a i f(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)g
ii f(3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)g

b i f(a, a), (a, b)g ii f(a, a), (b, a)g
c i ? ii ?

2 a b

3 To prove: A£ (B [ C) = (A£B) [ (A£ C)

Proof:

() ) Suppose (x, y) 2 A£ (B [ C)

) x 2 A and y 2 B [ C

) x 2 A and y 2 B or y 2 C

) (x, y) 2 A£B or (x, y) 2 A£ C

) (x, y) 2 (A£B) [ (A£ C)

Thus A£ (B [ C) µ (A£B) [ (A£ C) .... (1)

(( ) Suppose (x, y) 2 (A£B) [ (A£C)

) (x, y) 2 A£B or (x, y) 2 A£ C

) x 2 A and y 2 B or x 2 A and y 2 C

) x 2 A and y 2 B [ C

) (x, y) 2 A£ (B [ C)

Thus (A£B) [ (A£ C) µ A£ (B [ C) .... (2)

From (1) and (2), A£ (B [ C) = (A£B) [ (A£ C)

EXERCISE B.2

1 a domain = f0, 1, 2g, range = f2, 3, 5g
b domain = f¡3, ¡2, ¡1, 0, 1, 2, 3g,

range = f¡3, ¡2
p
2, ¡p

5, 0,
p
5, 2

p
2, 3g

c domain = fx j x 2 R g,

range = fy j y 2 R , ¡1 6 y 6 1g
d domain = f5, 10g,

range = f(3, 4), (4, 3), (6, 8), (8, 6)g
2 a f(2, 6), (2, 8), (3, 6), (4, 8), (5, 5)g

b f(2, 5), (3, 6), (4, 7), (5, 8)g
c f(3, 6), (4, 8)g
d f(2, 5), (2, 6), (2, 7), (2, 8), (3, 7), (3, 8)g

3 a i If x is female then xR= x
) R is not reflexive.

ii If x is female and y is a brother of x then x is not a

brother of y.

) xRy 6) yRx
) R is not symmetric.

iii Since xRy and yRz, z is a brother of y who is a

brother of x.
) z and x are siblings and z is a ‘brother’.

) xRz
) R is transitive.

b i xRx is not possible, as a person cannot be older than

oneself.
) xR= x
Thus R is not reflexive.

A B

U

(a) (b) (c)

y

x2-2

-2

2

y

x2 4

4

2
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WORKED SOLUTIONS 129

ii If xRy then y is older than x.

) x is not older than y
) yR= x
) R is not symmetric.

iii If xRy and yRz, then z is older than y who is older

than x.
) z is older than x
) xRz
) R is transitive.

c i xRx is true for all x since a person must live in the

same country as oneself.

) R is reflexive.

ii If xRy, x and y live in the same country and so y and

x live in the same country.

) yRx
) R is symmetric.

iii If xRy and yRz then z lives in the same country as y

who in turn lives in the same country as x.

) xRz
) R is transitive.

d i xRx is true, as one has the same mother as oneself.
) xRx
) R is reflexive.

ii If x and y have the same mother then y and x have the

same mother.
) xRy ) yRx
) R is symmetric.

iii If x and y have the same mother and y and z have the

same mother then x and z have the same mother.
) xRy and yRz ) xRz
) R is transitive.

4 a Consider 3 2 N . 3R= 3 as 3 and 3 have a common factor

of 3.
) R is not reflexive.

b If xRy then x and y are both in N and x and y have 1 only

as a common factor.
) y and x have 1 only as a common factor

) xRy ) yRx
) R is symmetric.

c As 2R3 and 3R4 but 2R= 4

fas 2 and 4 share a common factor of 2g
then xRy, yRz 6) xRz
) R is not transitive.

5 a ARB , A and B are disjoint

, A \B = ?

i In general A \A = A which is not ?
) AR= A
) R is not reflexive.

ii If ARB then A \B = ?

) B \A = ?

) BRA

) R is symmetric.

iii If A = f1, 2g, B = f3, 4g, C = f2, 5g then

A \B = ? and B \ C = ?
) ARB and BRC
But A \ C = f2g 6= ?
) ARB and BRC 6) ARC
) R is not transitive.

b ARB , A µ B

i Since A µ A for all sets A, then ARA for all A
) R is reflexive.

ii If A = f1, 2g and B = f1, 2, 3g then

A µ B but B 6µ A
) ARB 6) BRA
) R is not symmetric.

iii If ARB and BRC then

A µ B and B µ C ) A µ C
) R is transitive.

c ARB , n(A) = n(B)

i Since for all sets A, n(A) = n(A)
) ARA
) R is reflexive.

ii If ARB then n(A) = n(B)

) n(B) = n(A)

) BRA

) R is symmetric.

iii If ARB and BRC then

n(A) = n(B) and n(B) = n(C)

) n(A) = n(C)

) ARC

Thus R is transitive.

EXERCISE B.3

1 a Since (1, 1), (2, 2), (3, 3), and (4, 4) are all in R then

R is reflexive.

b Since, for example, (1, 2) 2 R but (2, 1) =2 R then R is

not symmetric.

c Since, for example, (1, 2) and (2, 3) 2 R, but (1, 3) =2 R

then R is not transitive.

2 It must be reflexive,

) (1, 1), (2, 2), (3, 3) must be included.

It must be symmetric,

) (2, 1) and (3, 2) must be included.

It must be transitive,

) (1, 3) must be included. f(1, 2) and (2, 3) are includedg
Thus (3, 1) must also be there.

) (1, 1), (2, 2), (3, 3), (2, 1), (3, 2), (1, 3), and (3, 1) must

be included.

3 Other solutions are possible.

a f(a, a), (b, b), (c, c), (a, b), (b, c)g
b f(a, b), (b, a), (a, c), (c, a)g c f(a, b), (b, c), (a, c)g
d f(a, a), (b, b), (c, c), (b, c), (c, b), (a, c), (c, a)g
e f(a, a), (b, b), (c, c), (b, c), (c, a), (b, a)g
f f(a, a), (b, b)g

4 xRy , x and y have the same gradient.

a (1) xRx is true as x has the same gradient as itself.

) R is reflexive.

(2) xRy ) yRx fIf line x has the same gradient as line y,

then line y has the same gradient as line x.g
) R is symmetric.

(3) If line x has the same gradient as line y which has the

same gradient as line z, then line x has the same gradient

as line z.
) xRy and yRz ) xRz
) R is transitive.

) R is an equivalence relation.

b Every line in the plane will be in an equivalence class.

For any given line, the equivalence class will consist of all

lines parallel to the given line.
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130 WORKED SOLUTIONS

5 xRy , x¡ y is divisible by 7.

(1) x¡ x = 0 for all x 2 N and 0 is a multiple of 7
) xRx for all x 2 N
) R is reflexive.

(2) xRy ) x¡ y = 7k for k 2 Z

) y ¡ x = 7(¡k) for k 2 Z

) y ¡ x is divisible by 7

) yRx

) R is symmetric.

(3) If xRy and yRz then

x¡ y = 7k and y ¡ z = 7l for k, l 2 Z

) x¡ z = (7k + y) + (7l¡ y)

= 7k + 7l

= 7(k + l) where k + l 2 Z
) xRz
) R is transitive.

Thus from (1), (2), (3), R is an equivalence relation.

6 xRy , x is similar to y.

a (1) Every regular polygon is similar to itself.

) xRx for all x 2 S.
) R is reflexive.

(2) Two regular polygons are similar if they have the same

number of sides.

Thus, if xRy then yRx for all x, y 2 S.

) R is symmetric.

(3) If xRy and yRz then the number of sides of x and y

are equal and the number of sides of y and z are equal.

Thus, the number of sides of x and z are equal.

) xRz
) xRy and yRz ) xRz
) R is transitive.

Hence, as R is reflexive, symmetric, and transitive, it is an

equivalence relation.

b The equivalence classes would be S3, S4, S5, S6, ...., where

Sn is the set of regular n-sided polygons.

c S3 is the set of all equilateral triangles,

S4 is the set of all squares, etc.

These sets are pairwise disjoint and every regular polygon

will be in one of these sets.
Thus, Si \ Sj = ? for all i 6= j, i, j 2 Z+,

i > 3, j > 3, and S = S3 [ S4 [ S5 [ S6 [ ::::
) fSng partitions S.

7 xRy if x 6 y for all x, y 2 Z .

To show that R is not an equivalence relation, we need to show

that one of reflexive, symmetric, or transitive properties does not

apply. In this example, R is not symmetric.

For example, 2 6 3 but 3 66 2.

8 a (a, b)R(x, y) , x = a for (a, b), (x, y) 2 Z £ Z .

(1) (a, b)R(a, b) since a = a is clearly true

) R is reflexive.

(2) If (a, b)R(x, y) then x = a

) a = x

) (x, y)R(a, b)

) R is symmetric.

(3) If (a, b)R(x, y) and (x, y)R(p, q) say, then x = a

and p = x

) p = a

) (a, b)R(p, q)

) R is transitive.

Thus from (1), (2), and (3), R is an equivalence relation.

b Each point in Z £Z is related to all points above or below it.

The equivalence classes are sets of integer grid points lying

on vertical lines defined by x = a, a 2 Z .

9 (a, b)R(x, y) , ay = bx in R £ R n f(0, 0)g.

a (1) (a, b)R(a, b) since ab = ba is clearly true.

) R is reflexive.

(2) If (a, b)R(x, y), then ay = bx

) ya = xb

) (x, y)R(a, b)
) R is symmetric.

(3) If (a, b)R(x, y) and (x, y)R(c, d) say, then ay = bx

and dx = cy

) y

x
=

b

a
and

y

x
=

d

c

) b

a
=

d

c
) ad = bc

) (a, b)R(c, d)

) R is transitive.
Thus from (1), (2), and (3), R is an equivalence relation.

b Any point of R £R n f(0, 0)g is related to all points on the

line passing through the point and the origin. Each point is an

element of exactly one equivalence class which consists of all

points (excluding (0, 0)) lying on the line passing through O

and the point.

10 (a, b)R(x, y) , y ¡ b = 3x¡ 3a for (a, b), (x, y) 2 R £ R

a (1) (a, b)R(a, b) since b¡ b = 3a¡ 3a
) R is reflexive.

(2) If (a, b)R(x, y) then y ¡ b = 3x¡ 3a

) b¡ y = ¡(3x¡ 3a)

) b¡ y = 3a¡ 3x

) (x, y)R(a, b)
) R is symmetric.

(3) If (a, b)R(x, y) and (x, y)R(m, n) say, then

y ¡ b = 3x¡ 3a and n¡ y = 3m¡ 3x

) (n¡ y) + (y ¡ b) = (3m¡ 3x) + (3x¡ 3a)

) n¡ b = 3m¡ 3a

) (a, b)R(m, n)

) R is transitive.
From (1), (2), and (3), R is an equivalence relation.

b Any point R £ R is related to all points on the line through

the point with gradient 3. Each point is an element of exactly

one equivalence class containing all points which lie on the

line through that point, with gradient 3.

11 aRb , 3ab > 0 for a, b 2 Z

a i For any a 2 Z , a2 > 0

) 3a2 > 0

) aRa

) R is reflexive.

ii If aRb then 3ab > 0

) 3ba > 0

) bRa

) R is symmetric.

iii If aRb and bRc then 3ab > 0 and 3bc > 0.

But this does not ) 3ac > 0
For example, if a = 2, b = 0, c = ¡2,

then 3ab = 0 > 0

3bc = 0 > 0

3ac = ¡12 6> 0

) R is not transitive.

b As R is not transitive,

R is not an equivalence relation.
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WORKED SOLUTIONS 131

12 (a, b)R(c, d) , a¡ c is a multiple of 2 and

b¡ d is a multiple of 3

for all (a, b), (c, d) 2 Z £ Z .

a (1) For any (a, b) 2 Z £ Z ,

a¡ a = 0 which is a multiple of 2

b¡ b = 0 which is a multiple of 3

) (a, b)R(a, b)
) R is reflexive.

(2) Suppose (a, b)R(c, d)
) a¡ c = 2s and b¡ d = 3t for some s, t 2 Z
) c¡ a = 2(¡s) and d¡ b = 3(¡t)
) c¡ a is a multiple of 2 and

d¡ b is a multiple of 3
) (c, d)R(a, b)
) R is symmetric.

(3) Suppose (a, b)R(c, d) and (c, d)R(e, f) for some

(a, b), (c, d), (e, f) 2 Z £ Z
) a¡ c = 2s1 and c¡ e = 2s2

b¡ d = 3t1 d¡ f = 3t2

for some s1, t1, s2, t2 2 Z .

Now a¡ e = (a¡ c) + (c¡ e) = 2(s1 + s2) and

b¡ f = (b¡ d) + (d¡ f) = 3(t1 + t2)

fs1 + s2 2 Z and t1 + t2 2 Z g
) (a, b)R(e, f)
Thus R is transitive.

From (1), (2), and (3), R is an equivalence relation.

b i (a, b)R(0, 0)

, a¡ 0 = 2s and b¡ 0 = 3t, s, t 2 Z

, a = 2s and b = 3t

The equivalence class containing (0, 0)

= f(a, b) j a = 2s, b = 3t, s, t 2 Z g
ii (a, b)R(1, 3)

, a¡ 1 = 2s and b¡ 3 = 3t

, a = 1 + 2s and b = 3 + 3t = 3(1 + t)

The equivalence class containing (1, 3)

= f(a, b) j a = 2s+ 1, b = 3t, s, t 2 Z g
c For (a, b) 2 Z £ Z ,

a = 2s or 2s+ 1, s 2 Z
b = 3t, 3t+ 1, or 3t+ 2, t 2 Z
There are 2£ 3 = 6 distinct equivalence classes.

Two of them are listed in b, and the other 4 are:

f(a, b) j a = 2s, b = 3t+ 1, s, t 2 Z g
f(a, b) j a = 2s, b = 3t+ 2, s, t 2 Z g
f(a, b) j a = 2s+ 1, b = 3t+ 1, s, t 2 Z g
f(a, b) j a = 2s+ 1, b = 3t+ 2, s, t 2 Z g

EXERCISE B.4

1 a If a ´ b (modn), then a¡ b = kn, k 2 Z .... (1)

If c ´ d (modn), then c¡ d = ln, l 2 Z .... (2)

) a¡ b+ c¡ d = (k + l)n

) (a+ c)¡ (b+ d) = (k + l)n, k + l 2 Z

) a+ c ´ b+ d (modn)

b From (1) and (2) in a, ac = (b+ kn)(d+ ln)

) ac = bd+ lbn+ kdn+ kln2

) ac¡ bd = n(lb+ kd+ kln)

where lb+ kd+ kln 2 Z

fsince b, d, l, k, n 2 Z g
Hence ac ´ bd (modn)

2 If a = 1, x ´ 1 (mod 11)

) x = 1 + 11k, k 2 Z

) x = 1 is smallest in Z +

If a = 2, 2x ´ 1 (mod 11)

) 2x = 1+ 11k, k 2 Z

) 2x = 12 fsmallestg
) x = 6

If a = 3, 3x = 1+ 11k, k 2 Z

) 3x = 12 fsmallestg
) x = 4

If a = 4, 4x = 1+ 11k, k 2 Z

) 4x = 12 fsmallestg
) x = 3

If a = 5, 5x = 1+ 11k, k 2 Z

) 5x = 45 fsmallestg
) x = 9

If a = 6, 6x = 1+ 11k, k 2 Z

) 6x = 12 fsmallestg
) x = 2

If a = 7, 7x = 1+ 11k, k 2 Z

) 7x = 56 fsmallestg
) x = 8

If a = 8, 8x = 1+ 11k, k 2 Z

) 8x = 56 fsmallestg
) x = 7

If a = 9, 9x = 1+ 11k, k 2 Z

) 9x = 45 fsmallestg
) x = 5

If a = 10, 10x = 1 + 11k, k 2 Z

) 10x = 100 fsmallestg
) x = 10

3 xRy , x ´ y (modn), x, y 2 Z
(1) As x¡x = 0 and 0 is a multiple of n then x ´ x (modn)

) xRx for all x 2 Z
) R is reflexive.

(2) If xRy then x ´ y (modn)

) x = y + kn, k 2 Z

) y = x+ (¡k)n, ¡k 2 Z

) y ´ x (modn)

) yRx

Thus xRy ) yRx for all x, y 2 Z
) R is symmetric.

(3) If xRy and yRz for x, y, z 2 Z then

x ´ y (modn) and y ´ z (modn)

) x = y + sn and y = z + tn, s, t 2 Z

) x = z + tn+ sn

) x = z + (t+ s)n with t+ s 2 Z

) x ´ z (modn)

) xRz

Thus xRy and yRz ) xRz for all x, y, z 2 Z
) R is transitive.

From (1), (2), and (3), R is an equivalence relation.

There are n residue classes possible. These leave a remainder of

0, 1, 2, 3, 4, ...., n¡ 1 when divided by n.
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132 WORKED SOLUTIONS

These are [0], [1], [2], [3], ...., [n¡ 1] fSee Example 19g
Note: Z n = f0, 1, 2, 3, ...., n ¡ 1g is the set of residues

modulo n, n 2 Z +.

4 xRy , x2 ´ y2 (mod 3), x, y 2 N

(1) As x2 = x2, then x2 ´ x2 (mod 3)

) xRx

) R is reflexive.

(2) If xRy, then x2 ´ y2 (mod 3)

) x2 = y2 + 3n, n 2 Z

) y2 = x2 + 3(¡n), ¡n 2 Z

) y2 ´ x2 (mod 3)

) yRx

) R is symmetric.

(3) If xRy and yRz then

x2 = y2 + 3n and y2 = z2 + 3m, n, m 2 Z

) x2 = z2 + 3m+ 3n

) x2 = z2 + 3(m+ n) where m+ n 2 Z

) x2 ´ z2 (mod 3)

) xRz

) R is transitive.

From (1), (2), and (3), R is an equivalence relation.

5 a a ´ b (modn)

) a = b+ kn, k 2 Z

) a2 = b2 + 2bkn+ k2n2

) a2 = b2 + (2bk + k2n)n where 2bk + k2n 2 Z

) a2 ´ b2 (modn)

b Consider a = 2, b = 0, n = 4.

Then a2 = 4 ´ 0 (mod 4)

and b2 = 0 ´ 0 (mod 4)

But 2 6´ 0 (mod 4)

Thus, a2 ´ b2 (modn) 6) a ´ b (modn)

EXERCISE C.1

1 a Is a function ffor each x 2 A, there is at most one y 2 Bg.

domain = f1, 2, 3g = A, codomain = f1, 2, 3g = B,

range = f1, 2g
b Is not a function fas f(2) = 1 or 3g.

c Is a function ffor each x 2 A, there is at most one y 2 Bg.

domain = f1, 2, 3g = A, codomain = f1, 2, 3g = B,

range = f1, 2, 3g = B

2 a Is a function ffor each x, there is at most one yg.

b Is not a function as

for each x there are

infinitely many values

of y.

fvertical line testg

c Domain = fx j x 2 R n f0gg
Is a function

fvertical line testg.

d For x = 1, y = 2 or ¡1
So, for x = 1, there is more than one y.

) is not a function.

3 a i Not an injection as f(1) = f(3).

ii Not a surjection as range = f1, 2, 4g 6= B.

iii Not a bijection fas not both an injection and a

surjectiong.

b i Is an injection as no two elements of A are mapped onto

the same element of B.

ii Is a surjection fas range = Bg.

iii Is a bijection fas it is both an injection and a

surjectiong.

4 a

Is not a function as the

vertical line x = 1 meets

the graph at more than one

point.

b

Is a function as every

vertical line meets the

cuve exactly one.

c Is not a function

as, for example, the

vertical line x = 1
2

cuts the graph twice.

5 Relation Function Injection Bijection

a false false false

b true false false

c true true true

6 a

Is an injection as no

horizontal line cuts it

more than once.

b

Is not an injection as the

horizontal line y = 0
cuts the graph more than

once.

c Is an injection as no

horizontal line cuts the

graph more than once.

y

x

x y>y = x

y

x

2
^^
x2

y =

y

x2 4

4

2

y

x

y = xsin

y

x

[

-[

1-1

x = Qw
x + 2y = 12 2

y

x

y = x3

y

x

y = x - x3

y

x

y = x + 2x - 24

x > 0

2 ,

4

1-1
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WORKED SOLUTIONS 133

7 a Is a function.

i Is not an injection. ii Is a surjection.

iii Is not a bijection.

b Is a function.

i Is not an injection. ii Is not a surjection.

iii Is not a bijection.

c Is not a function.

d Is a function.

i Is not an injection.

ii Is not a surjection.

iii Is not a bijection.

e For every point (x, y) 2 R 2 there is exactly one value of

z 2 R .
) R is a function.

i It is not an injection as, for example,

(1, 3) ! z = 12 + 32 = 10 and (¡1, 3) ! z = 10

also.

ii It is not a surjection as x2+y2 > 0 for all (x, y) 2 R 2,

) range is R + [ f0g which is not R .

iii Is not both an injection and surjection.

) cannot be a bijection.

f (a, b)R(x, y) , y = a and x = b.

Is a function.
i Is an injection. ii Is a surjection. iii Is a bijection.

8 a The function is an

injection.

fhorizontal line testg
It is also a surjection as its

range is R , the codomain.

) the function is a

bijection.

b

The function is not an injection.

) cannot be a bijection.

c

The function is not an injection.

) cannot be a bijection.

d The function is not a surjection. For example, there is no

x 2 Q + such that f(x) = x2 = 3. (3 2 Q +)

e The function is an

injection as no horizontal

line cuts it more than

once. It is also a

surjection as its range is

[0, 1], the codomain.

) the function is a

bijection.

f It is an injection, but not

a surjection as its range is

feven integersg which is

not Z+.

9 We are given A µ B µ S

To prove: f(A) µ f(B)

Proof: B µ S and f : S ! S ) f(B) µ range of B

Now if f(x) 2 f(A)

) x 2 A

) x 2 B fas A µ Bg
) f(x) 2 f(B)

Thus f(x) 2 f(B) for all x 2 A.

Hence, f(x) 2 f(A) ) f(x) 2 f(B).

Thus f(A) µ f(B).

10 a R ! R , f(x) = 2x

By the horizontal line

test, f is an injection

) one-to-one
but its range is R + not R
) is not onto.

b R ! R ,

f(x) = x(x¡1)(x¡2)
The horizontal line

y = 0 cuts the graph

more than once.
) f is not an injection

) not one-to-one
and its range is R , the

codomain ) is onto.

c R ! R , f(x) = x+ 1
No horizontal line cuts

the graph more than

once.
) f is an injection or

is one-to-one
and its range is R , the

codomain ) is onto.

d R ! R , f(x) = x2

A horizontal line can

cut the graph more than

once.
) f is not one-to-one

and its range is

R + [ f0g, not R
) is not onto.

y

x
-1

y = 2x - 1

y

x3-3

-3

3

y

x

y = x x 0| | , >

y = x x 0| | , <

y

x

y = xsin

"w

1

y

x

(1 2),

(2 4),

(3 6),

(4 8),

y

x

1

y = 2x

y

x

y = f(x)

21

y

x

1

-1

y = f(x)

y

x

y

x

y = x + 12

4

2-2
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134 WORKED SOLUTIONS

11 a i Suppose f is onto.

) each element of S = f1, 2, 3g lies in the range of f

) f(1) = a, f(2) = b, and f(3) = c where

fa, b, cg µ f1, 2, 3g fas f is a functiong
) a, b, and c are distinct

) f is one-to-one

So, no example exists where f is onto, but not

one-to-one.

ii Suppose f is one-to-one.

) the elements 1, 2, 3 are mapped to distinct elements

in the range

) the range has 3 distinct elements

) R(f) = f1, 2, 3g fas R(f) µ f1, 2, 3gg
) f is onto

So, no example exists where f is one-to-one, but not

onto.

b .... f is one-to-one , f is onto.

12 f(p(x)) = p0(x)
a As every polynomial p(x), has a unique derivative p0(x),

then f is a function.

b It is not an injection. For example,

f(x2) = 2x and f(x2 + 1) = 2x

ff(x1) = f(x2) = 2x, but x1 6= x2g
c Each polynomial p(x) has an antiderivative q(x) where

q(x) =
R

p(x) dx+ c

) f(q(x)) = p(x)

) the range of f is P , and so f is a surjection.

d As f is not an injection, f cannot be a bijection.

EXERCISE C.2

1 a (g ± f)(1)

= g(f(1))

= g(5) = 0

(g ± f)(2)

= g(f(2))

= g(6) = 1

(g ± f)(3)

= g(f(3))

= g(4) = 1

) g ± f = f(1, 0), (2, 1), (3, 1)g
b f ± g is not defined, as the domain of f does not contain the

range of g.

2 a i (f ± g)(1)

= f(g(1))

= f(3)

= 3

ii (g ± f)(1)

= g(f(1))

= g(2)

= 0

iii (f ± g)(3)

= f(g(3))

= f(1)

= 2

iv (g ± f)(3)

= g(f(3))

= g(3)

= 1

b i As f is a bijection, f¡1 exists and

f¡1 = f(0, 2), (1, 0), (2, 1), (3, 3)g.

ii As g is a bijection g¡1 exists and

g¡1 = f(0, 2), (1, 3), (2, 0), (3, 1)g.

iii (g ± f)(0) = g(f(0))

= g(1)

= 3

(g ± f)(2) = g(f(2))

= g(0)

= 2

(g ± f)(1) = g(f(1))

= g(2)

= 0

(g ± f)(3) = g(f(3))

= g(3)

= 1

) g ± f = f(0, 3), (1, 0), (2, 2), (3, 1)g
) (g ± f)¡1 = f(0, 1), (1, 3), (2, 2), (3, 0)g

iv (f¡1 ± g¡1)(0)

= f¡1(g¡1(0))

= f¡1(2)

= 1

(f¡1 ± g¡1)(2)

= f¡1(g¡1(2))

= f¡1(0)

= 2

(f¡1 ± g¡1)(1)

= f¡1(g¡1(1))

= f¡1(3)

= 3

(f¡1 ± g¡1)(3)

= f¡1(g¡1(3))

= f¡1(1)

= 0

) f¡1 ± g¡1 = f(0, 1), (1, 3), (2, 2), (3, 0)g
3 a f : Z ! Z , f(x) = 1¡ x

f is both an injection

and surjection

) it is a bijection and

so f¡1 exists.

Let y = 1 ¡ x which

has inverse x = 1 ¡ y
or y = 1¡ x

) f¡1(x) = 1 ¡ x,

x 2 Z
fThis function is its own inverse.g

b f : R ! R , f(x) = x3 ¡ 2
f is both an injection

and a surjection

) it is a bijection and

f¡1 exists.

Let y = x3 ¡ 2 which

has inverse

x = y3 ¡ 2

) y3 = x+ 2

) y = 3
p
x+ 2

) f¡1(x) = 3
p
x+ 2, x 2 R

4 f(x) =
p
1¡ x

a For f(x) to exist, 1¡ x > 0

) x 6 1

) f has domain ]¡1, 1 ].

If y =
p
1¡ x

then y > 0 fpa > 0 for all a 2 R g
) f has range [ 0, 1 [ .

b, e

c As y =
p
1¡ x then the inverse function is

x =
p

1¡ y

) 1¡ y = x2

) y = 1¡ x2

But, as y > 0 for f , x > 0 for f¡1.

) f¡1(x) = 1¡ x2, x > 0

d Domain of f¡1(x) is [ 0, 1 [ .

Range of f¡1(x) is ]¡1, 1].

e On graph above.

y

x
2

-2

y

x

y = f(x)

-2

y

x

1

1

y = x

y = f (x)-1

y = f(x)
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WORKED SOLUTIONS 135

5 f(x) = ln(x+ 1), g(x) = x2. Domain R +.

a (g ± f)(x) = g(f(x))

= g(ln(x+ 1))

= [ln(x+ 1)]2

b (f ± g)(x) = f(g(x))

= f(x2)

= ln(x2 + 1)

c y = ln(x+ 1) has

inverse x = ln(y + 1)

) y + 1 = ex

) y = ex ¡ 1

) f¡1(x) = ex ¡ 1

d (g ± f)(x) = [ln(x+ 1)]2

) y = [ln(x+ 1)]2

has inverse

x = [ln(y + 1)]2, x > 0

) ln(y + 1) =
p
x

y + 1 = e
p
x

y = e
p
x ¡ 1

) (g ± f)¡1(x) = e
p
x ¡ 1

e g(x) = x2, x 2 R +

) y = x2, x > 0 and has inverse x = y2, y > 0

) y =
p
x fy = ¡p

x has y < 0g
) g¡1(x) =

p
x

Hence (f¡1 ± g¡1)(x) = f¡1(g¡1(x))

= f¡1(
p
x)

= e
p
x ¡ 1 ffrom cg

6 For a function h(x) with inverse h¡1(x),

h(h¡1(x)) = h¡1(h(x)) = x, the identity function. .... (1)

Now ((g ± f) ± (f¡1 ± g¡1))(x)

= g(f(f¡1(g¡1(x))))

= g(g¡1(x)) fas f(f¡1(x)) = x, by (1)g
= x fsame reasong

Also ((f¡1 ± g¡1) ± (g ± f))(x)

= f¡1(g¡1(g(f(x))))

= f¡1(f(x)) fas g¡1(g(x)) = xg
= x fas f¡1(f(x)) = xg

Thus g ± f and f¡1 ± g¡1 are inverses.

) (g ± f)¡1 = f¡1 ± g¡1

7 a f(x) = ex + 3e¡x

From the graph of

y = f(x), a

horizontal line can cut

the graph more than

once.
) f is not one-to-one

) f is not invertible.

Thus f¡1(x) does not exist.

b As x ! 1, ex ! 1,

e¡x ! 0
) f(x) ! 1
As x ! ¡1, ex ! 0,

¡e¡x ! ¡1
) f(x) ! ¡1
f(x) appears to be

one-to-one and onto.

Check: (algebraic)

Suppose f(x1) = f(x2) for some x1, x2 2 R and

x1 6= x2.

) ex1 ¡ 3e¡x1 = ex2 ¡ 3e¡x2

) ex1 ¡ ex2 = 3
¡
e¡x1 ¡ e¡x2

¢
) ex1 ¡ ex2 = 3

³
1

ex1

¡ 1

ex2

´
) ex1 ¡ ex2 = 3

³
ex2 ¡ ex1

ex1ex2

´
) ex1 ¡ ex2 =

¡3 (ex1 ¡ ex2)

ex1+x2

) ex1+x2 = ¡3 fx1 6= x2 ) ex1 6= ex2

) ex1 ¡ ex2 6= 0g
which is a contradiction fas ea > 0 for all a 2 R g
) the supposition is false.

) f(x1) = f(x2) ) x1 = x2

Thus f is a one-to-one function and as the range of f is R ,

f is onto.

) f¡1 exists.

Let y = ex ¡ 3e¡x = ex ¡ 3

ex

) exy = (ex)2 ¡ 3 or (ex)2 ¡ exy ¡ 3 = 0

) ex =
¡(¡y)§

p
y2 ¡ 4(1)(¡3)

2

) ex =
y §

p
y2 + 12

2

Hence ex =
y +

p
y2 + 12

2

fas ex > 0 for all

y 2 R g

) x = ln

Ã
y +

p
y2 + 12

2

!

which has inverse y = ln

Ã
x+

p
x2 + 12

2

!

) f¡1(x) = ln

Ã
x+

p
x2 + 12

2

!

8 f(x, y) =

³
y

x
, xy

´
f : R + £ R + ! R + £ R +

a Suppose f(x1, y1) = f(x2, y2) for

(x1, y1), (x2, y2) 2 R + £ R +

)

³
y1

x1
, x1y1

´
=

³
y2

x2
, x2y2

´
)

y1
x1

=
y2
x2

and x1y1 = x2y2

)
x1
x2

=
y1
y2

=
y2
y1

) y 2
1 = y 2

2

) y1 = §y2

) y1 = y2 fy1, y2 2 R +g
and since x1y1 = x2y2, x1 = x2 also.

Thus (x1, y1) = (x2, y2)
Hence f is one-to-one. .... (1)

y

x

y = [ (x + 1)]ln 2

y

x

y = (x + 1)ln

y

x

y = f(x)

4

y

x

y = f(x)
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136 WORKED SOLUTIONS

Now let
y

x
= a and xy = b, (a, b) 2 R + £ R +

) y = ax and y =
b

x

) ax =
b

x

) x2 =
b

a

) x =

r
b

a
fx 2 R +, ) x 6= ¡

r
b

a
g

and so y = ax = a

r
b

a
=

p
ab

Consequently, (a, b) = f

µr
b

a
,
p
ab

¶
.

Hence, each point in R + £ R + is in the range of f
) f is onto .... (2)

Since f is one-to-one, (1), and f is onto, (2), f is a bijection.

b f¡1(x, y) =

µr
y

x
,
p
xy

¶
Check: (must be done)

(f ± f¡1)(x, y) = f(f¡1(x, y))

= f

Ãr
y

x
,
p
xy

!

=

0
@p

xyq
y

x

,

r
y

x
£p

xy

1
A

=

µ
p
xy

p
xp
y

,

p
yp
x

p
x
p
y

¶
= (x, y)

and (f¡1 ± f)(x, y) = f¡1(f(x, y))

= f¡1
³
y

x
, xy

´

=

0
@sxy

y

x

,

r
y

x
xy

1
A

=

Ãs
xy

µ
x

y

¶
,
p

y2

!

=

³p
x2,
p

y2
´

= (x, y) as (x, y) 2 R + £ R +

Thus (f ± f¡1)(x, y) = (f¡1 ± f)(x, y) = (x, y)

Hence, f¡1(x, y) =

Ãr
y

x
,
p
xy

!

EXERCISE D.1

1 a ¤ b = a¡ b+ 1 and a} b = ab¡ a are defined on Q .

a i 3 ¤ 4

= 3¡ 4 + 1

= 0

ii 4 ¤ 3

= 4¡ 3 + 1

= 2

iii (¡2)} 3

= ¡2£ 3¡ (¡2)

= ¡6 + 2

= ¡4

iv 6} 0

= 6£ 0¡ 6

= ¡6

v 0} 7

= 0£ 7¡ 0

= 0

vi 4 ¤ ((¡5)} 2)

= 4 ¤ (¡10¡ (¡5))

= 4 ¤ (¡5)

= 4¡ (¡5) + 1

= 10

vii (4 ¤ (¡5))} 2

= (4¡ (¡5) + 1)} 2

= 10} 2

= 20¡ 10

= 10

b i 4 ¤ x = 7

) 4¡ x+ 1 = 7

) 5¡ x = 7

) x = ¡2

ii x} 3 = ¡2

) 3x¡ x = ¡2

) 2x = ¡2

) x = ¡1

2 + ¡ £ ¥
Z + T F (1) T F (2)

Z T T T F (3)

Q + T F (4) T T

Q T T T F (5)

R T T T F (6)

(1) is false, as for example, 3¡ 5 = ¡2 =2 Z +

(2) is false, as for example, 4¥ 5 = 4
5

=2 Z +

(3) is false, as for example, 5¥ 6 = 5
6

=2 Z

(4) is false, as for example, 3
4
¡ 7

8
=2 Q +

(5) is false, as for example, 2
3
¥ 0

1
=2 Q

(6) is false, as for example, 6¥ 0 =2 R

3 a This set is not closed as, for example, 1+ i and 1¡ i are

in the set but their product is 2 or 2 + 0i =2 the set.

b This set is not closed as, for example, 2+ i and 1+2i are

in the set but (2 + i)(1 + 2i) = 2 + 4i+ i ¡ 2 = 0 + 5i

which is =2 the set.

c Let S = fa+ bi j a, b 2 Q , a and b not both 0g
= fa+ bi j a, b 2 Q , ja+ bij 6= 0g

If a+ bi and c+ di 2 S,

(a+ bi)(c+ di) = (ac¡ bd) + (bc+ ad)i.
Now ac¡ bd and bc+ ad 2 Q since a, b, c, d 2 Q ,

and j(a+ bi)(c+ di)j = ja+ bij jc+ dij 6= 0.

) (a+ bi)(c+ di) 2 S
) the set is closed under £.

4 a S = f2, 4, 6, 8, ....g under +

Let 2m and 2n be in S; m, n 2 Z +

) 2m+ 2n = 2(m+ n) where m+ n 2 Z +

) 2m+ 2n is even.
Thus S is closed under +.

b S = f2, 4, 6, 8, ....g under £
Let 2m and 2n be in S; m, n 2 Z +

) 2m£ 2n = 2(2mn) where 2mn 2 Z +

) 2m£ 2n is even.
Thus S is closed under £.
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WORKED SOLUTIONS 137

c S is not closed under + as, for example, 1, 3 2 S but

1 + 3 = 4 =2 S.

d Any members of S can be written as 2a ¡ 1 and 2b ¡ 1

where a, b 2 Z +.

(2a¡ 1)(2b¡ 1) = 4ab¡ 2a¡ 2b+ 1

= 2(2ab¡ a¡ b) + 1

where 2ab¡ a¡ b 2 Z +

) (2a¡ 1)(2b¡ 1) 2 S also

) S is closed under £.

5 a a ¤ b = a2 ¡ b

i If a, b 2 Z , a2 2 Z and b 2 Z
) a2 ¡ b 2 Z
) a ¤ b is closed on Z .

ii If a, b 2 Q , a2 2 Q and b 2 Q
) a2 ¡ b 2 Q
) a ¤ b is closed on Q .

b a ¤ b =
a+ b

a

i As 3 ¤ 2 = 5
3

=2 Z , a ¤ b is not closed on Z .

ii As 0 ¤ 2 = 2
0

=2 Q , a ¤ b is not closed on Q .

c a ¤ b =
p
a2b2 = jabj

i If a, b 2 Z , jabj 2 Z ) a ¤ b 2 Z
) a ¤ b is closed on Z .

ii If a, b 2 Q , jabj 2 Q ) a ¤ b 2 Q
) a ¤ b is closed on Q .

d a ¤ b =
p

jabj where jabj > 0

If a = 1, b = 2, a ¤ b =
p
2 which is not in Z and not

in Q .

) a ¤ b is not closed on i Z ii Q

EXERCISE D.2

1 a a ¤ b = a+ 2b

i If a = 1, b = 2

1 ¤ 2 = 1 + 2(2)

= 5

and

2 ¤ 1 = 2 + 2(1)

= 4

6= 1 ¤ 2

) ¤ is not commutative

on R .

ii If a = 1, b = 2, c = 1

(a ¤ b) ¤ c

= 5 ¤ 1

= 7

and

a ¤ (b ¤ c)

= 1 ¤ (2 ¤ 1)

= 1 ¤ 4

= 9

6= (a ¤ b) ¤ c

) ¤ is not associative

on R .
b a ¤ b = a2 + b2

i b ¤ a = b2 + a2

= a2 + b2

= a ¤ b for all a, b 2 R
) ¤ is commutative on R .

ii If a = 2, b = 1, c = 1

(a ¤ b) ¤ c

= (22 + 12) ¤ 1

= 5 ¤ 1

= 52 + 12

= 26

and a ¤ (b ¤ c)

= 2 ¤ (12 + 12)

= 2 ¤ 2

= 22 + 22

= 8

6= (a ¤ b) ¤ c

) ¤ is not associative on R .

c a ¤ b = ab¡ a¡ b

i b ¤ a = ba¡ b¡ a

= ab¡ a¡ b

= a ¤ b for all a, b 2 R
) ¤ is commutative on R .

ii If a = 1, b = 2, c = 3

(a ¤ b) ¤ c

= (1 ¤ 2) ¤ 3

= (2¡ 1¡ 2) ¤ 3

= ¡1 ¤ 3

= ¡3¡ (¡1)¡ 3

= ¡5

and a ¤ (b ¤ c)

= 1 ¤ (2 ¤ 3)

= 1 ¤ (6¡ 2¡ 3)

= 1 ¤ 1

= 1¡ 1¡ 1

= ¡1

6= (a ¤ b) ¤ c
) ¤ is not associative on R .

d a ¤ b =
1

a+ b

i b ¤ a =
1

b+ a

=
1

a+ b
= a ¤ b for all a, b 2 R

) ¤ is commutative on R .

ii If a = 1, b = 2, c = 3

(a ¤ b) ¤ c

=
1

1 + 2
¤ 3

= 1
3
¤ 3

=
1

1
3
+ 3

=
1

10
3

= 3
10

and a ¤ (b ¤ c)

= 1 ¤ (2 ¤ 3)

= 1 ¤ 1

2 + 3

= 1 ¤ 1
5

=
1

1 + 1
5

=
1

6
5

= 5
6
6= (a ¤ b) ¤ c

) ¤ is not associative on R .

2 Pn is: “If ¤ is associative and commutative on a set S, then

(a ¤ b)n = an ¤ bn” for all n 2 Z +.

Proof by induction on n

(1) If n = 1, (a ¤ b)1 = a ¤ b = a1 ¤ b1

) P1 is true.

(2) If Pk is true (k 2 Z +) then

(a ¤ b)k = ak ¤ bk

) (a ¤ b)k+1 = (a ¤ b)k ¤ (a ¤ b)1

= ak ¤ bk ¤ a ¤ b

= ak ¤ a ¤ bk ¤ b fcommutative lawg
= ak+1 ¤ bk+1

Thus P1 is true and Pk+1 is true whenever Pk is true

) Pn is true. fPrinciple of mathematical inductiong
3 a ¤ b = a¡ b, a} b = ab

a If a = 1, b = 2, c = 3

a ¤ (b} c)

= 1 ¤ (2} 3)

= 1 ¤ 6

= ¡5

and (a ¤ b)} (a ¤ c)

= (1 ¤ 2)} (1 ¤ 3)

= ¡1}¡2

= 2

) ¤ is not distributive over }.
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138 WORKED SOLUTIONS

b a} (b ¤ c) = a} (b¡ c)

= a(b¡ c)

= ab¡ ac

and (a} b) ¤ (a} c)

= ab ¤ ac

= ab¡ ac

) a} (b ¤ c) = (a} b) ¤ (a} c) for all a, b, c 2 R
) } is distributive over ¤.

4 a ¤ b = 3a+ b, a} b = 2ab
a If a = 1, b = 0, c = 2

a ¤ (b} c)

= 1 ¤ (0} 2)

= 1 ¤ 0

= 3

and (a ¤ b)} (a ¤ c)

= (1 ¤ 0)} (1 ¤ 2)

= 3} 5

= 30

) ¤ is not distributive over }.

b a} (b ¤ c)

= a} (3b+ c)

= 2a(3b+ c)

= 6ab+ 2ac

and (a} b) ¤ (a} c)

= 2ab ¤ 2ac

= 3(2ab) + 2ac

= 6ab+ 2ab

) a} (b ¤ c) = (a} b) ¤ (a} c) for all a, b, c 2 R +

) } is distributive over ¤.

5 a AnB = A \B0

Consider (AnB) nC
It is shaded.

Consider A n (BnC)

Thus (AnB) nC 6= A n (BnC)

) set difference is not associative.
) statement is true.

b A¢B = (AnB) [ (BnA)

= (A \B0) [ (B \A0)

Consider (A¢B)¢C = (A¢B)nC [ C n (A¢B)

(A¢B)nC

[

C nA¢B

which is

(A¢B)¢C

Now consider

A¢(B¢C) = A n (B¢C) [ (B¢C) nA
A n (B¢C)

[

(B¢C)nA

which is

A¢(B¢C)

Thus (A¢B)¢C = A¢(B¢C)

) symmetric difference is associative

) statement is true.

EXERCISE D.3

1 a 0 as a+ 0 = 0 + a = a for all a 2 R
b 1 as a£ 1 = 1£ a = a for all a 2 Z
c If x is the identity, then a ¤ x = x ¤ a = a for all a 2 R

) a = x = a

) x = a for all a 2 R

) x is not unique

) an identity element does not exist.

d If x is the identity, then a ¤ x = x ¤ a = a for all a 2 R
) 5ax = 5xa = a

) 5x = 1

) x = 1
5

) the identity element is 1
5

.

e If x is the identity, then a ¤ x = a for all a 2 R
) 2a+ ax+ 2x = a

) x(a+ 2) = ¡a

) x =
¡a

a+ 2
for all a 2 R

) x is not unique

) an identity element does not exist.

f If x is the identity, then x¥ a = a¥ x = a for all a 2 R

)
x

a
=

a

x
= a

) x2 = a2, x = 1, x = a2

) x is not unique

) an identity element does not exist.

2 a For Q under +, the identity is 0 as a+0 = 0+ a = a for

every a 2 Q .

The inverse of a 2 Q is ¡a 2 Q
as a+ (¡a) = (¡a) + a = 0.

b For Q under £, the identity is 1 as a£ 1 = 1£ a = a for

all a 2 Q . However 0 2 Q but 0 does not have an inverse

under £. All other members of Q have an inverse
1

a
.

c For Z+ under £, the identity is 1 as a £ 1 = 1 £ a = a

for all a 2 Z +. However, only the element 1 has an inverse

in Z +, and its inverse is 1. All other elements a 2 Z+,

a 6= 1, do not have an inverse in Z +.

A B

U

A B

U
C

A B

U
C

A B

U

A B

U
C

A B

U
C

A B

U
C

A B

U
C

A B

U
C

A B

U
C
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WORKED SOLUTIONS 139

d For R under ¤ where a ¤ b = 2ab

Suppose a ¤ e = e ¤ a = a for all a 2 R
) 2ae = 2ea = a

) a(2e¡ 1) = 0 for all a 2 R

) e = 1
2

Now, if a ¤ x = x ¤ a = 1
2

) 2ax = 2xa = 1
2

) x =
1

4a

So, if a 6= 0,
1

4a
is the inverse of a 2 R .

a = 0 does not have an inverse.

3 a 2£10 2 = 4

2£10 4 = 8

2£10 6 = 2

2£10 8 = 6

4£10 2 = 8

4£10 4 = 6

4£10 6 = 4

4£10 8 = 2

6£10 2 = 2

6£10 4 = 4

6£10 6 = 6

6£10 8 = 8

8£10 2 = 6

8£10 4 = 2

8£10 6 = 8

8£10 8 = 4

All 4£ 4 = 16 possibilities

show that a£10 b 2 S

) S is closed under £10.

b x£10 6 = 6£10 x = x for all x 2 S

) 6 is the identity.

4 a i If a, b 2 Q n f1g, then a and b are rationals. Since

a+ b and ab are rationals fQ is closed under +, £g,

a+ b¡ ab 2 Q as Q is closed under ¡.

So it remains to show that

a¡ ab+ b 6= 1 for a 6= 1, b 6= 1

Now a¡ 1 6= 0 and b¡ 1 6= 0

) (a¡ 1)(b¡ 1) 6= 0

) ab¡ a¡ b+ 1 6= 0

) a¡ ab+ b 6= 1

ii Suppose a, b, c 2 Q n f1g.

) (a} b)} c

= (a¡ ab+ b)} c

= a¡ ab+ b¡ (a¡ ab+ b)c+ c

= a¡ ab+ b¡ ac+ abc¡ bc+ c

= a+ b+ c¡ ab¡ ac¡ bc+ abc

and a} (b} c)

= a} (b¡ bc+ c)

= a¡ a(b¡ bc+ c) + b¡ bc+ c

= a¡ ab+ abc¡ ac+ b¡ bc+ c

= a+ b+ c¡ ab¡ ac¡ bc+ abc

) (a} b)} c = a} (b} c) for all a, b, c 2 Q n f1g
) } is associative on Q n f1g.

iii Suppose a} e = a for all a 2 Q n f1g
) a¡ ae+ e = a for all a 2 Q n f1g
) e(1¡ a) = 0 for all a 2 Q n f1g

) e = 0 as a 6= 1

Thus a} 0 = a

Also 0} a = 0¡ 0 + a = a

Hence the identity is e = 0.

iv Consider a}x = e

) a¡ ax+ x = 0

) x(1¡ a) = ¡a and so x =
a

a¡ 1

Also, x} a =
a

a¡ 1
} a

=
a

a¡ 1
¡ a2

a¡ 1
+ a

=
a¡ a2

a¡ 1
+ a

= ¡a

³
a¡ 1

a¡ 1

´
+ a

= ¡a+ a provided that a 6= 1

= 0 as a 6= 1

Thus the inverse of a 2 Q n f1g is
a

a¡ 1
2 Q n f1g.

b Yes.

5 (a, b) ¤ (c, d) = (ac¡ bd, ad+ bc) on R 2

a [(a, b) ¤ (c, d)] ¤ (g, h)

= (ac¡ bd, ad+ bc) ¤ (g, h)

= ((ac¡ bd)g ¡ (ad+ bc)h, (ac¡ bd)h+ (ad+ bc)g)

= (acg ¡ bdg ¡ adh¡ bch, ach¡ bdh+ adg + bcg)

and
(a, b) ¤ [(c, d) ¤ (g, h)]

= (a, b) ¤ (cg ¡ dh, ch+ dg)

= (a(cg ¡ dh)¡ b(ch+ dg), a(ch+ dg) + b(cg ¡ dh))

= (acg ¡ adh¡ bch¡ bdg, ach+ adg + bcg ¡ bdh)

= [(a, b) ¤ (c, d)] ¤ (g, h) for all elements in R 2

) ¤ is associative on R 2.

b (a, b) ¤ (c, d) = (ac¡ bd, ad+ bc)

= (ca¡ db, cb+ da)

= (c, d) ¤ (a, b)

f£ and + all commutative for realsg
) ¤ is commutative.

c Suppose (a, b) ¤ (e, f) = (a, b)

) (ae¡ bf , af + be) = (a, b)

) ae¡ bf = a

be+ af = b

o
for all a, b 2 R

) e = 1 and f = 0 fequating coefficientsg
Thus (a, b) ¤ (1, 0) = (a, b) and also

(1, 0) ¤ (a, b) = (a¡ 0, b+ 0)

= (a, b)

) the identity element is (1, 0).

d (0, 0) has no inverse as (a, b) ¤ (0, 0) = (0, 0) 6= (1, 0)

e For (a, b) 6= (0, 0)

Consider (a, b) ¤ (p, q) = (1, 0) for all a, b 2 R

) (ap¡ bq, aq + bp) = (1, 0)

)

n
ap¡ bq = 1

bp+ aq = 0
for all a, b 2 R

Hence

½
a2p¡ abq = a

b2p+ abq = 0

) (a2 + b2)p = a
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140 WORKED SOLUTIONS

p =
a

a2 + b2
and aq = ¡bp

) aq =
¡ab

a2 + b2

) p =
a

a2 + b2
and q =

¡b

a2 + b2

Since (a, b) 6= (0, 0), then a2 + b2 6= 0

) the inverse of (a, b) is

³
a

a2 + b2
,

¡b

a2 + b2

´
as

³
a

a2 + b2
,

¡b

a2 + b2

´
¤ (a, b)

=

µ
a2

a2 + b2
¡ ¡b2

a2 + b2
,

ab

a2 + b2
+

¡ab

a2 + b2

¶

=

µ
a2 + b2

a2 + b2
, 0

¶
= (1, 0) also

6 a For p(x) and q(x) 2 P , p(x) + q(x) is a polynomial with

coefficients in R and with degree equal to the maximum of

fdegree of p(x), degree of q(x)g
) p(x) + q(x) 2 P
) P is closed under +.

b For all p(x), q(x) 2 P , p(x) + q(x) = q(x) + p(x)

fas + in R is commutative for each coefficient of xg
c [p(x) + q(x)] + r(x) = p(x) + [q(x) + r(x)]

for all p, q, and r 2 P .

fas addition in R is associative for each coefficient of xg
d The zero polynomial is the identity as

p(x) + 0 = 0 + p(x) = p(x) for every p(x) 2 P .

e The inverse of p(x) is ¡p(x) under +

f¡p(x) is the polynomial of p(x) multiplied by ¡1g
as p(x) + (¡p(x)) = ¡p(x) + p(x) = 0, the identity.

EXERCISE D.4

1 a £5 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

i x = 3

ii x = 2

iii x = 3

iv x = 4

b The identity is 1 as a£5 1 = 1£5 a = a for all

a 2 f1, 2, 3, 4g.

c As 3£5 2 = 2£5 3 = 1

) 3 and 2 are inverses, and so 3¡1 = 2

d As 1£5 1 = 1 and 4£5 4 = 1,

1¡1 = 1, 2¡1 = 3, 3¡1 = 2, and 4¡1 = 4

2 a ¤ a b c

a a b c

b b c a

c c a b

i a is clearly the identity.

ii As a ¤ a = a and

b ¤ c = c ¤ b = a, a is its

own inverse, and b and c are

inverses.

iii ¤ is commutative as there is symmetry about the leading

diagonal.

iv We need to check all 27 (= 3£ 3£ 3) possibilities.

(1) (a ¤ a) ¤ a

= a ¤ a

= a

and

a ¤ (a ¤ a)

= a ¤ a

= a X

(2) (a ¤ a) ¤ b

= a ¤ b

= b

and

a ¤ (a ¤ b)

= a ¤ b

= b X

(3) (a ¤ a) ¤ c

= a ¤ c

= c

and

a ¤ (a ¤ c)

= a ¤ c

= c X

(4) (a ¤ b) ¤ a

= b ¤ a

= b

and

a ¤ (b ¤ a)

= a ¤ b

= b X

(5) (a ¤ b) ¤ b

= b ¤ b

= c

and

a ¤ (b ¤ b)

= a ¤ c

= c X

(6) (a ¤ b) ¤ c

= b ¤ c

= a

and

a ¤ (b ¤ c)

= a ¤ a

= a X

(7) (a ¤ c) ¤ a

= c ¤ a

= c

and

a ¤ (c ¤ a)

= a ¤ c

= c X

(8) (a ¤ c) ¤ b

= c ¤ b

= a

and

a ¤ (c ¤ b)

= a ¤ a

= a X

(9) (a ¤ c) ¤ c

= c ¤ c

= b

and

a ¤ (c ¤ c)

= a ¤ b

= b X

(10) (b ¤ a) ¤ a

= b ¤ a

= b

and

b ¤ (a ¤ a)

= b ¤ a

= b X

(11) (b ¤ a) ¤ b

= b ¤ b

= c

and

b ¤ (a ¤ b)

= b ¤ b

= c X

(12) (b ¤ a) ¤ c

= b ¤ c

= a

and

b ¤ (a ¤ c)

= b ¤ c

= a X

(13) (b ¤ b) ¤ a

= c ¤ a

= c

and

b ¤ (b ¤ a)

= b ¤ b

= c X

(14) (b ¤ b) ¤ b

= c ¤ b

= a

and

b ¤ (b ¤ b)

= b ¤ c

= a X

(15) (b ¤ b) ¤ c

= c ¤ c

= b

and

b ¤ (b ¤ c)

= b ¤ a

= b X

(16) (b ¤ c) ¤ a

= a ¤ a

= a

and

b ¤ (c ¤ a)

= b ¤ c

= a X

(17) (b ¤ c) ¤ b

= a ¤ b

= b

and

b ¤ (c ¤ b)

= b ¤ a

= b X

(18) (b ¤ c) ¤ c

= a ¤ c

= c

and

b ¤ (c ¤ c)

= b ¤ b

= c X

(19) (c ¤ a) ¤ a

= c ¤ a

= c

and

c ¤ (a ¤ a)

= c ¤ a

= c X

(20) (c ¤ a) ¤ b

= c ¤ b

= a

and

c ¤ (a ¤ b)

= c ¤ b

= a X

(21) (c ¤ a) ¤ c

= c ¤ c

= b

and

c ¤ (a ¤ c)

= c ¤ c

= b X
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(22) (c ¤ b) ¤ a

= a ¤ a

= a

and

c ¤ (b ¤ a)

= c ¤ b

= a X

(23) (c ¤ b) ¤ b

= a ¤ b

= b

and

c ¤ (b ¤ b)

= c ¤ c

= b X

(24) (c ¤ b) ¤ c

= a ¤ c

= c

and

c ¤ (b ¤ c)

= c ¤ a

= c X

(25) (c ¤ c) ¤ a

= b ¤ a

= b

and

c ¤ (c ¤ a)

= c ¤ c

= b X

(26) (c ¤ c) ¤ b

= b ¤ b

= c

and

c ¤ (c ¤ b)

= c ¤ a

= c X

(27) (c ¤ c) ¤ c

= b ¤ c

= a

and

c ¤ (c ¤ c)

= c ¤ b

= a X

Thus (x ¤ y) ¤ z = x ¤ (y ¤ z) for all x, y, z 2 S
) ¤ is associative on S.

v It is a Latin square.

b ¤ a b c

a a a a

b a b c

c a c b

i b is the identity.

ii a has no inverse

b is its own inverse

c is its own inverse.

iii ¤ is commutative as there is symmetry about the leading

diagonal.

iv We need to check all 27 possibilities as we did in part a.

When this is done we find that ¤ is associative.

v It is not a Latin square.

c ¤ a b c

a a c b

b c b a

c b a c

i No identity exists.

ii Without an identity, no

inverses are possible.

iii ¤ is commutative as there is symmetry about the leading

diagonal.

iv ¤ is not associative, for example

(a ¤ b) ¤ c

= c ¤ c

= c

whereas a ¤ (b ¤ c)

= a ¤ a

= a

So, in general, (x ¤ y) ¤ z 6= x ¤ (y ¤ z) for all

x, y, z 2 S. Thus ¤ is not associative.

v It is a Latin square.

d ¤ a b c

a c a b

b a b c

c b c c

i b is the identity.

ii b is its own inverse

a and c are inverses.

iii ¤ is commutative as there is symmetry about the leading

diagonal.

iv ¤ is not associative as, for example,

(a ¤ c) ¤ c

= b ¤ c

= c

whereas a ¤ (c ¤ c)

= a ¤ c

= b

So, in general, (x ¤ y) ¤ z 6= x ¤ (y ¤ z) for all

x, y, z 2 S.

v It is not a Latin square.

e ¤ a b c

a b c a

b a b c

c c a b

i No identity exists.

ii Without an identity, no

inverses are possible.

iii ¤ is not commutative as there is no symmetry about the

leading diagonal.

iv ¤ is not associative as, for example,

(c ¤ b) ¤ a

= a ¤ a

= b

whereas c ¤ (b ¤ a)

= c ¤ a

= c

So, in general, (x ¤ y) ¤ z 6= x ¤ (y ¤ z) for all

x, y, z 2 S. Thus ¤ is not associative.

v It is a Latin square.

3 a i £ 1 i ¡i ¡1

1 1 i ¡i ¡1

i i ¡1 1 ¡i

¡i ¡i 1 ¡1 i

¡1 ¡1 ¡i i 1

ii The table is symmetric about the leading diagonal.

) £ is commutative.
As £ is associative in C , it is associative in U4.

iii The identity is 1 as 1£a = a£1 = a for all a 2 U4.

iv As 1£ 1 = 1, 1¡1 = 1

As ¡1£¡1 = 1, (¡1)¡1 = ¡1

As i£¡i = 1, i¡1 = ¡i and i¡1 = ¡i

So, 1 and ¡1 are there own inverses and

i and ¡i are inverses.

b i Un is the set of nth roots of unity in C .

ii For n = 4, 1 = 1

® = cis
¡
2¼
4

¢
= cis

¡
¼
2

¢
= i

®2 = cis
¡
2¼
2

¢
= cis¼ = ¡1

®3 = cis
¡
3¼
2

¢
= ¡i

) U4 = f1, ®, ®2, ®3g = f1, i, ¡1, ¡ig.

EXERCISE E.1

1 a i As the Cayley table contains only elements of S, then S

is closed under ¤.

ii The identity element is e as x ¤ e = e ¤ x = x for all

x 2 S.

iii e is its own inverse.
Likewise, a, b, c, and d are their own inverses.

b As n(S) = 5 and we need to check that

(x ¤ y) ¤ z = x ¤ (y ¤ z) for all x, y, z 2 S, there are

5£ 5£ 5 = 125 checks to be made.

2 To prove: In group fG, ¤g where a, b, and c 2 G,

a ¤ b = a ¤ c ) b = c.

Proof: a ¤ b = a ¤ c

) a¡1 ¤ (a ¤ b) = a¡1 ¤ (a ¤ c)

fWe are pre-multiplying both sides by a¡1 which exists as

a 2 G.g
) (a¡1 ¤ a) ¤ b = (a¡1 ¤ a) ¤ c fAssociative lawg
) e ¤ b = e ¤ c fInverse lawg
) b = c fIdentity lawg
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142 WORKED SOLUTIONS

3 a fQ , £g is not a group.

The identity is 1 since 1£ a

b
=

a

b
£1 =

a

b
for all

a

b
2 Q .

However 0 2 Q has no inverse in Q as 0£ a

b
= 0 for all

a

b
2 Q .

b fQ n f0g, £g is an Abelian group.

Closure: If
a

b
and

c

d
2 Q n f0g then

a

b
£ c

d
=

ac

bd
where bd 6= 0 and ac 6= 0.

)
a

b
£ c

d
2 Q n f0g

) Q n f0g is closed under £.

Associative: As £ is associative in R , £ is associative

in the subset Q n f0g.

Identity: 1 is the identity in Q n f0g as

a

b
£1 = 1£ a

b
=

a

b
for all

a

b
2 Q n f0g.

Inverse: Since
a

b
£ b

a
=

b

a
£ a

b
= 1 for all

a

b
,
b

a
2 Q n f0g³

a

b

´¡1

=
b

a

Commutative:
a

b
£ c

d
=

c

d
£ a

b
for all

a

b
,
c

d
2 Q n f0g.

c fOdd integers, £g is not a group.

Although 1 is the identity, each element does not necessarily

have an inverse.
For example 3¡1 does not exist as there is no odd integer x

such that 3£ x = x£ 3 = 1.

d S = f3n j n 2 Z g is an Abelian group under £ as:

Closure: For m, n 2 Z , 3m£3n = 3m+n where

m+ n 2 Z .

Associative: (3a3b)3c = 3a+b £ 3c

= 3a+b+c

= 3a £ 3b+c

= 3a(3b3c) for all a, b, c 2 Z .

Identity: Is 30 = 1 as

3a30 = 303a = 3a for all a 2 Z .

Inverse: 3n £ 3¡n = 30 = 1 = 3¡n £ 3n

) 3¡n is the inverse of 3n for all n 2 Z .

Commutative: 3a3b = 3b3a = 3a+b for all a, b 2 Z
) S is commutative under £.

e S = f1, ¡ 1
2
+

p
3
2
i, ¡ 1

2
¡

p
3

2
ig

= f1, ®, ®2g
where ® = cis

¡
2¼
3

¢
fS, £g is an Abelian group as:

Closure: £ 1 ® ®2

1 1 ® ®2

® ® ®2 1

®2 ®2 1 ®

Only 1, ®, and ®2 are in the table

) S is closed under £.

Associative: S = f1, ®, ®2g µ C , the set of all complex

numbers.
As £ is associative in C , £ is associative

in S (a subset of C ).

Identity: Is 1 as a£ 1 = 1£a = a for all a 2 S.

Inverse: 1£ 1 = 1 ) 1 is its own inverse.

® and ®2 are inverses.
Commutative: As £ is commutative in C , £ is

commutative in S (a subset of C ).

f S = f3n j n 2 Z g is an Abelian group under + as:

Closure: As 3a 2 S and 3b 2 S for a, b 2 Z
3a+ 3b = 3(a+ b) where a+ b 2 Z
) 3a+3b 2 S ) S is closed under +.

Associative: + is associative in Z
) + is associative in S as S µ Z .

Identity: 0 = 3£0 2 S and 0+3a = 3a+0 = 3a
for all a 2 Z ) 0 is the identity.

Inverse: ¡3n is the inverse of 3n for all n 2 Z as

3n+ (¡3n) = (¡3n) + 3n = 0.

Commutative: 3m+ 3n = 3n+ 3m for all m, n 2 Z .

g S = f3n j n 2 Z g is not a group under £ as there is no

identity element.

Reason: If e was the identity then 3a £ e = 3a for all

a 2 S would ) e = 1 but 1 =2 S.

h fC , +g is an Abelian group.

Closure: a+ bi, c+ di 2 C then a, b, c, and d are

real.
Now a+ bi+ c+ di = (a+ c)+ (b+ d)i

where a+ c, b+ d 2 R
) C is closed under +.

Associative: Let a+ bi, c+ di, e+ fi 2 C
[(a+ bi) + (c+ di)] + (e+ fi)

= (a+ bi) + (c+ di) + (e+ fi)

= (a+ bi) + [(c+ di) + (e+ fi)]

) + is associative on C .
Identity: 0 = 0 + 0i is the identity as

(a+ bi) + (0 + 0i) = (0 + 0i) + (a+ bi)

= a+ bi

for all a+ bi 2 C
Inverse: ¡a ¡ bi is the inverse of a + bi for all

a+ bi 2 C as

(¡a¡ bi) + (a+ bi)

= (a+ bi) + (¡a¡ bi) = 0

Commutative: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

= (c+ di) + (a+ bi)

for all a+ bi, c+ di 2 C
) + is commutative on C .

i fC , £g is not a group.

It has identity 1 = 1 + 0i, but 0 = 0 + 0i does not have

an inverse in C since 0£ z = z £ 0 6= 1 for any z 2 C .

j Let S = fa+ bi j a, b 2 R , ja+ bij = 1g
= fz j z 2 C , jzj = 1g

This is the set of all complex numbers which lie on the circle,

centre 0 + 0i and with radius 1.
Closure: For all z1, z2 2 S

jz1z2j = jz1j jz2j = 1£ 1 = 1
) z1z2 2 S.

Associative: S µ C and so £ is associative on S

fas £ is associative on C g.

Identity: 1 = 1 + 0i has j1 + 0ij = 1 and

z £ 1 = 1£ z = z for all z 2 S
) 1 is the identity under £.

I

R

(1 0),

& *-Qw ],

& *- -Qw ],
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WORKED SOLUTIONS 143

Inverse: z¡1 =
1

z
is the inverse of z 2 S

as z £ 1

z
=

1

z
£ z = 1

and

¯̄̄
1

z

¯̄̄
=

1

jzj =
1

1
= 1

) 1

z
2 S

Commutative: z1z2 = z2z1 for all z1, z2 2 S

fas S µ C where commutative law holdsg
) fS, £g is an Abelian group.

k C n f0g under £ is an Abelian group.

Closure: C n f0g µ C where closure holds under £
) C n f0g is closed under £.

Associative: Likewise to closure C n f0g is associative
under £.

Identity: The identity is 1 = 1 + 0i as

z £ 1 = 1£ z = z for all z 2 C n f0g.

Inverse: Let z = a+ bi 2 C n f0g.

The inverse of z is
1

z
=

1

a+ bi

³
a¡ bi

a¡ bi

´
=

a¡ bi

a2 + b2

=

³
a

a2 + b2

´
¡
³

b

a2 + b2

´
i

Since z 6= 0, a and b are not both 0.

)
1

z
is defined and 2 C n f0g.

Commutative: Commutativity holds in C under £
) will hold in C n f0g, a subset of C .

4 a ¤ b =
ab

4
on Q +

Closure: For every a, b 2 Q +, let a =
p

q
and b =

r

s
;

p, q, r, s 2 Z+

) a ¤ b =
pr

4qs
> 0 and a ¤ b 2 Q +.

Associative: (a ¤ b) ¤ c

=
ab

4
¤ c

=

ab

4
£ c

4

=
abc

16

and a ¤ (b ¤ c)

= a ¤ bc

4

=
a£ bc

4

4

=
abc

16

) (a¤b)¤c = a¤(b¤c) for all a, b, c 2 Q +.

Identity: The identity is 4, as 4 2 Q +

and a ¤ 4 =
a£ 4

4
= a,

4 ¤ a =
4£ a

4
= a for all a 2 Q +

Inverse: Consider a ¤ x = x ¤ a = 4

)
ax

4
=

xa

4
= 4

) x =
16

a
where

16

a
2 Q +

) a¡1 =
16

a
is the inverse of a 2 Q +.

) fG, ¤g is a group.

5 The statement is false.

For example, consider the Latin square

under ¤ where ¤ is not associative.

For example, (a ¤ b) ¤ c = c ¤ c = c

But a ¤ (b ¤ c) = a ¤ a = a.

¤ a b c

a a c b

b c b a

c b a c

6 a fZ 7 n f0g, £7g £7 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Closure: Each element of the Cayley table is in

Z 7 n f0g
) Z 7 n f0g is closed under £7.

Associative: £ is associative on R .
Hence £7 is associative on Z 7 n f0g.

Identity: 1£7 a = a£7 1 = a for every

a 2 Z 7 n f0g.

) 1 is the identity.

Inverse: 1 is its own inverse, 1¡1 = 1

2 and 4 are inverses, 2¡1 = 4, 4¡1 = 2

3 and 5 are inverses, 3¡1 = 5, 5¡1 = 3

6 is its own inverse, 6¡1 = 6

) fZ 7 n f0g, £7g is a group.

b fZ 9 n f0g, £9g is not a group as, for example, 3£9 3 = 0

and 0 =2 Z 9 n f0g.

Thus Z 9 n f0g is not closed under £9.

7 (f + g)(x) = f(x) + g(x) for all x 2 R .

Closure: For f and g 2 F , (f+g)(x) = f(x)+g(x) is

a real-valued function fR is closed under +g.

) F is closed under +.

Associative: For f , g, and h 2 F ,

(f + (g + h))(x) = f(x) + (g + h)(x)

= f(x) + g(x) + h(x)

= (f + g)(x) + h(x)

= ((f + g) + h)(x)

) + is associative in F .

Identity: f(x) = 0 is the identity function

factually it is the horizontal line y = 0g
For any g 2 F ,

(f + g)(x) = f(x) + g(x)

= 0 + g(x) fif f(x) = 0g
= g(x)

and (g + f)(x) = g(x) + f(x)

= g(x) + 0

= g(x)

) f(x) = 0 is the identity function.

Inverse: For any function f(x) 2 F , ¡f(x) 2 F .

Also, f(x) + (¡f(x)) = f(x)¡ f(x)

= 0

and (¡f(x)) + f(x) = ¡f(x) + f(x)

= 0

) for all f 2 F , f¡1 = ¡f

) each element of F has an inverse.

) fF , +g is a group.

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_an\143IB_HL_OPT-SRG_an.cdr Tuesday, 13 August 2013 2:42:15 PM BRIAN
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8 a By the group axioms there exists an identity element in G.

Suppose there are two of them, e and f , say.

) e ¤ a = a ¤ e = a .... (1)

and f ¤ a = a ¤ f = a .... (2)

o
for all a 2 G

Since e and f 2 G,

in (1), e ¤ f = f ¤ e = f and

in (2), f ¤ e = e ¤ f = e

) e = f

) the identity in fG, ¤g is unique.

b By the group axioms there exists an inverse element for every

a in G.

Suppose a ¡1
1 and a ¡2

2 are both inverses of a

) a ¤ a ¡1
1 = a ¡1

1 ¤ a = e, the identity

and a ¤ a ¡1
2 = a ¡1

2 ¤ a = e also

Thus a ¤ a¡1
1 = a ¤ a ¡1

2

We now multiply on the left by a¡1

) a¡1 ¤ (a ¤ a ¡1
1 ) = a¡1 ¤ (a ¤ a ¡1

2 )

) (a¡1 ¤ a) ¤ a ¡1
1 = (a¡1 ¤ a) ¤ a ¡1

2

fas ¤ is associative in Gg
) e ¤ a ¡1

1 = e ¤ a ¡1
2 finverse axiomg

) a ¡1
1 = a ¡1

2 fidentity axiomg
Hence each element has a unique inverse.

9 Let a, b 2 G where a ¤ x = b.

Since a 2 G, it has a unique inverse a¡1 2 G such that

a ¤ a¡1 = a¡1 ¤ a = e, the identity.

We now multiply a ¤ x = b on the left by a¡1.

) a¡1 ¤ (a ¤ x) = a¡1 ¤ b

) (a¡1 ¤ a) ¤ x = a¡1 ¤ b fassociative axiomg
) e ¤ x = a¡1 ¤ b finverse axiomg

) x = a¡1 ¤ b fidentity axiomg
where a¡1 ¤ b is the unique solution in G as a¡1, b 2 G and

¤ is closed on G.

Similarly, for y ¤ a = b

(y ¤ a) ¤ a¡1 = b ¤ a¡1

) y ¤ (a ¤ a¡1) = b ¤ a¡1

) y ¤ e = b ¤ a¡1

) y = b ¤ a¡1

where b, a¡1 2 G and ¤ is closed on G

) y = b ¤ a¡1 is the unique solution in G.

10 a S = R n f¡2g and a ¤ b = a+ b+
ab

2

Closure: a ¤ b = ¡2

, a+ b+
ab

2
= ¡2

, 2a+ 2b+ ab = ¡4

, ab+ 2a+ 2b+ 4 = 0

, (a+ 2)(b+ 2) = 0

, a = ¡2 or b = ¡2

So, if a 6= ¡2, b 6= ¡2 then a ¤ b 6= ¡2
) for a, b 2 S, a ¤ b 2 S
) ¤ is closed on S.

Associative: a ¤ (b ¤ c)

= a ¤
³
b+ c+

bc

2

´
= a+ b+ c+

bc

2
+

a

³
b+ c+ bc

2

´
2

= a+ b+ c+
bc

2
+

ab

2
+

ac

2
+

abc

4
and

(a ¤ b) ¤ c

=

³
a+ b+

ab

2

´
+ c

= a+ b+
ab

2
+ c+

³
a+ b+ ab

2

´
c

2

= a+ b+ c+
ab

2
+

ac

2
+

bc

2
+

abc

4

= a ¤ (b ¤ c) for all a, b, c 2 S

) ¤ is associative on S.

Identity: If a ¤ e = e ¤ a = a, then

a+ e+
ae

2
= e+ a+

ae

2
= a

) e+
ae

2
= 0

) e

³
1 +

a

2

´
= 0 for all a 2 S

) e = 0

Check: a ¤ 0 = a+ 0 + 0
2
= a X

0 ¤ a = 0 + a+ 0
2
= a X

) 0 is the identity in fS, ¤g.

Inverse: If a ¤ x = x ¤ a = 0 for all a 2 S,

a+ x+
ax

2
= x+ a+

xa

2
= 0

) 2a+ 2x+ ax = 2x+ 2a+ xa = 0

) (2 + a)x = ¡2a

x =
¡2a

a+ 2
and as a 6= ¡2, x 2 S

) every element a 2 S has a unique

inverse a¡1 =
¡2a

a+ 2
.

Commutative: b ¤ a = b+ a+
ba

2

= a+ b+
ab

2
f+ and £ are commutative on R g
= a ¤ b

) ¤ is commutative on S.

Hence fS, ¤g forms an Abelian group.

b i 2 ¤ x ¤ 5 = 11

) 2 ¤ 5 ¤ x = 11 fcommutative propertyg
) (2 + 5 + 10

2
) ¤ x = 11

) 12 ¤ x = 11

) 12 + x+
12x

2
= 11
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WORKED SOLUTIONS 145

) 7x+ 12 = 11

) x = ¡ 1
7

ii x ¤ 3 ¤ 8 = 12

) x ¤ (3 + 8 + 24
2
) = 12

) x ¤ 23 = 12

) x+ 23 +
23x

2
= 12

) 2x+ 46 + 23x = 24

) 25x = ¡22

) x = ¡ 22
25

11 Since ¤ is associative we do not need brackets. We shall also

write a ¤ b as ab.

We need to prove that:

(1) the left identity is also the right identity, so it will be the

identity in G

(2) the left inverse is also the right inverse and so will be the

inverse required for the group axiom.

Proof:

(1) We know that ea = a fleft identityg
Suppose ae = y, say for some y 2 G

) a ¡1
L

ae = a ¡1
L

y

) ee = a ¡1
L

y

) e = a ¡1
L

y fe is the left identityg
) a ¡1

L
y = a ¡1

L
a

) (a ¡1
L

)¡1a ¡1
L| {z } y = (a ¡1

L
)¡1a ¡1

L
a

) ey = ea

) y = a

Hence ae = a fas ae = yg
) e is also the right identity.

(2) For any a 2 G, a ¡1
L

a = e fgiveng
Suppose a a ¡1

L
= d, say where d 6= e

) a a ¡1
L

a| {z } = da

) ae = da

) a = da

) a ¡1
L

a = a ¡1
L

da

) e = a ¡1
L

da

As a ¡1
L

2 G, there exists a left inverse (a ¡1
L

)¡1 for all

a ¡1
L

in G.

Thus (a ¡1
L

)¡1e = (a ¡1
L

)¡1a ¡1
L

da

) (a ¡1
L

)¡1 = eda

) (a ¡1
L

)¡1 = da

) (a ¡1
L

)¡1 = a fas a = dag
Thus a ¡1

L
a = e = aa ¡1

L

Hence a ¡1
L

is also the right inverse for a

) a ¡1
L

is the inverse of a for all a 2 G.

So, fG, ¤g has ¤ which is closed and associative. It contains

an identity e where a ¤ e = e ¤ a = a for all a 2 G and each

element a has a unique inverse a¡1 where

a ¤ a¡1 = a¡1 ¤ a = e

) fG, ¤g is a group.

12 As G is closed and associative under ¤ and e is the identity we

only have to show that every element a 2 G has a unique

inverse. Since e appears once in each column, for each b 2 G

there exists a unique a 2 G such that a ¤ b = e.

Thus, each element of G has a left inverse in G

) by question 11, each element of g has an inverse in G

) fG, ¤g is a group.

13 S is the set of all subsets of U .

Closure: If A, B 2 S then A¢B 2 S as

A¢B = (AnB) [ (BnA).

Associative: Proved in Exercise D.2, question 5.

Identity: For each set A 2 U , A¢? = ?¢A = A

) the empty set ? is the identity.

Inverse: Since A¢A = ? for all sets A 2 S, each

element is its own inverse

) A¡1 = A.

EXERCISE E.2

1 a ¤ 2 4 6 8

2 4 8 2 6
4 8 6 4 2
6 2 4 6 8
8 6 2 8 4

b 6 is the identity as

6 ¤ a = a ¤ 6 = a
for all a 2 G.

c Closure: Every entry in the Cayley table is an element

of G.
) G is closed under ¤.

Associative: Since multiplication is associative, ¤ is

associative.
Identity: The identity is 6.

Inverse: As 2 ¤ 8 = 6, 2¡1 = 8 and 8¡1 = 2

As 4 ¤ 4 = 6, 4¡1 = 4

As 6 ¤ 6 = 6, 6¡1 = 6

d 22 = 4, 23 = 4 ¤ 2 = 8, 24 = 8 ¤ 2 = 6
) 2 has order 4

42 = 6, ) 4 has order 2

61 = 6, ) 6 has order 1

82 = 4, 83 = 8 ¤ 4 = 2, 84 = 2 ¤ 8 = 6
) 8 has order 4

e y = 2 ¤ x ¤ 4 = 2 ¤ 4 ¤ x f ¤ is commutativeg
) y = 8 ¤ x

When x = 2, y = 6, x = 4, y = 2,

x = 6, y = 8, x = 8, y = 4

) solutions are: (2, 6), (4, 2), (6, 8), (8, 4).

2 a The Cayley table is: ¤ 1 3 5 7

1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

Closure: Each element in the table is an element of A
) A is closed under ¤.

Associative: Since multiplication is associative, ¤ is

associative.
Identity: The identity is 1 as a ¤ 1 = 1 ¤ a = a for

all a 2 A.

Inverse: 1£ 1 = 1 ) 1¡1 = 1

3£ 3 = 1 ) 3¡1 = 3

5£ 5 = 1 ) 5¡1 = 5

7£ 7 = 1 ) 7¡1 = 7

Each element is its own inverse.
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146 WORKED SOLUTIONS

b ¤ is commutative as the Cayley table is symmetric about the

leading diagonal

) fA, ¤g is an Abelian group.

c 11 = 1 ) 1 has order 1

32 = 1, 52 = 1, 72 = 1
) 3, 5, and 7 each have order 2

d H = f1, 3g ¤ 1 3

1 1 3
3 3 1

has closure, associativity, identity 1, and inverses as 1¡1 = 1

and 3¡1 = 3
) fH, ¤g is a group.

3 a Un = f® j ®n = 1, ® 2 C g
If ®n = 1 then

® = cis
¡
2¼
n

¢
and ®i = cis

¡
2¼i
n

¢
for i = 1, 2, 3, 4, 5, ...., n

and ®n = cis (2¼) = 1

) Un = f1, ®, ®2, ®3, ...., ®n¡1g
Closure: We note that ®i+n = ®i®n = ®i.

Hence ®i®j = ®i+j(modn) 2 Un.
Thus Un is closed under £.

Associative: As £ is associative on C , £ is associative

on Un, a subset of C .

Identity: 1 is the identity as ®i £ 1 = 1 £ ®i = ®i

for all i = 0, 1, 2, 3, ...., n¡ 1.

Inverse: Since ®n = 1, and ®i®n¡i = ®n = 1

then (®i)¡1 = ®n¡i for all

i = 0, 1, 2, 3, ...., n¡ 1.

So, each element ®i has a unique inverse

®n¡i.
Thus fUn, £g is a group.

b U4 = f1, i, ¡1, ¡ig
c 11 = 1, ) 1 has order 1

i4 = (i2)2 = (¡1)2 = 1, ) i has order 4

(¡1)2 = 1, ) ¡1 has order 2

(¡i)4 = i4 = 1, ) ¡i has order 4

4 As G has order m, m is the smallest positive integer such that

xm = e.

(( ) If n is a multiple of m, then n = km where k 2 Z

) xn = xkm = (xm)k = ek = e

() ) If xn = e for n 2 Z , we suppose that n is not a

multiple of m.

Then n = km+ r fDivision algorithmg
where 0 < r < m

Then e = xn

= xkm+r

= xkmxr

= (xm)kxr

= ekxr

= exr

= xr , 0 < r < m

This is a contradiction as m is the smallest positive integer

such that xm = e

) the supposition is false

) xn = e ) n is a multiple of m.

Hence xn = e , n is a multiple of m.

5 a () ) Suppose g has finite order m
) gm = e where m is the smallest positive integer

for which this is true.
We now multiply on the left by g¡1, m times

) (g¡1)mgm = (g¡1)me

) (gm)¡1gm = (g¡1)m

fBy Theorem 8, (g¡1)m = (gm)¡1g
) e = (g¡1)m

and (g¡1)i = gmg¡i fgm = eg
= gm¡i

6= e fi = 1, 2, 3, ...., m¡ 1g
) g¡1 has order m.

Thus g¡1 has finite order and
¯̄
g¡1
¯̄
= jgj.

(( ) Similarly
¯̄
g¡1
¯̄
= m ) jgj = m

fby reversing the roles of g and g¡1g
b Proved in a.

c Suppose (fg)n = e

) (fg)(fg)(fg) :::: (fg)| {z }
n of these

= e

Multiplying on the left by f¡1 and on the right by g¡1

) f¡1f(gf)(gf)(gf) :::: (gf)| {z }
n¡ 1 of these

gg¡1 = f¡1eg¡1

) e(gf)n¡1e = f¡1g¡1

) (gf)n¡1 = f¡1g¡1

) (gf)(gf)n¡1 = gff¡1g¡1

) (gf)n = geg¡1

= gg¡1 = e

By reversing the roles of f and g, we can show that

(gf)n = e ) (fg)n = e.

) (fg)n = e , (gf)n = e and so jfgj = jgf j.
) if jfgj = m, then jgf j = m.

EXERCISE F.1

1 a

³
1 2 3 4
3 4 2 1

´
b

³
1 2 3 4
4 1 2 3

´
c

³
1 2 3 4
1 2 3 4

´
d

³
1 2 3 4
2 4 1 3

´
2 a

³
1 2 3 4
2 4 1 3

´
b

³
1 2 3 4
2 1 4 3

´
c

h³
1 2 3 4
3 4 2 1

´³
1 2 3 4
2 4 1 3

´i¡1

=

³
1 2 3 4
4 1 3 2

´¡1

=

³
1 2 3 4
2 4 3 1

´
3 (qp) ¤ (p¡1q¡1)

= qpp¡1q¡1

= qeq¡1

= qq¡1

= e

and (p¡1q¡1) ¤ (qp)

= p¡1q¡1qp

= p¡1ep

= p¡1p

= e

Thus (qp) ¤ (p¡1q¡1) = (p¡1q¡1)(qp) = e

) qp and p¡1q¡1 are inverses.

Hence (qp)¡1 = p¡1q¡1
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WORKED SOLUTIONS 147

4 a pq = r

) pqq¡1 = rq¡1

) pe = rq¡1

) p = rq¡1

) p =

³
1 2 3 4
2 1 4 3

´³
1 2 3 4
3 1 2 4

´¡1

=

³
1 2 3 4
2 1 4 3

´³
1 2 3 4
2 3 1 4

´
=

³
1 2 3 4
1 4 2 3

´
b p =

³
1 2 3 4
2 4 1 3

´³
1 2 3 4
2 3 1 4

´¡1

=

³
1 2 3 4
2 4 1 3

´³
1 2 3 4
3 1 2 4

´
=

³
1 2 3 4
1 2 4 3

´
5 a A B C D

A A B C D

B B C D A

C C D A B

D D A B C

S = fA, B, C, Dg

Closure: All elements of the table are from S
) S is closed under composition of

permutations.

Associative: On checking, the operation is associative.

Identity: The identity is A.

Inverse: The inverse of A is A, B is D, C is C,

and D is B.
Hence S is a group under permutation composition.

b A B C D

A A B C D

B B A D C

C C D A B

D D C B A

S = fA, B, C, Dg

Closure: All elements of the table are from S
) S is closed under the composition of

purmutations.

Associative: On checking, the operation is associative.

Identity: The identity is A.

Inverse: Each element is its own inverse.

That is, A¡1 = A, B¡1 = B,

C¡1 = C, D¡1 = D.
Hence S under the operation is a group.

6 a p =

³
1 2 3 4
4 3 2 1

´
6= e

p2 =

³
1 2 3 4
4 3 2 1

´³
1 2 3 4
4 3 2 1

´
=

³
1 2 3 4
1 2 3 4

´
= e ) p has order 2.

b q =

³
1 2 3 4
4 1 3 2

´
6= e

q2 =

³
1 2 3 4
4 1 3 2

´³
1 2 3 4
4 1 3 2

´
=

³
1 2 3 4
2 4 3 1

´
) q2 6= e

q3 = q2q =

³
1 2 3 4
2 4 3 1

´³
1 2 3 4
4 1 3 2

´
=

³
1 2 3 4
1 2 3 4

´
= e

) q has order 3.

c r =

³
1 2 3 4 5
4 5 1 3 2

´
6= e

r2 =

³
1 2 3 4 5
4 5 1 3 2

´³
1 2 3 4 5
4 5 1 3 2

´
=

³
1 2 3 4 5
3 2 4 1 5

´
6= e

r3 = r2r =

³
1 2 3 4 5
3 2 4 1 5

´³
1 2 3 4 5
4 5 1 3 2

´
=

³
1 2 3 4 5
1 5 3 4 2

´
6= e

r4 = r3r =

³
1 2 3 4 5
1 5 3 4 2

´³
1 2 3 4 5
4 5 1 3 2

´
=

³
1 2 3 4 5
4 2 1 3 5

´
6= e

r5 = r4r =

³
1 2 3 4 5
4 2 1 3 5

´³
1 2 3 4 5
4 5 1 3 2

´
=

³
1 2 3 4 5
3 5 4 1 2

´
6= e

r6 = r5r =

³
1 2 3 4 5
3 5 4 1 2

´³
1 2 3 4 5
4 5 1 3 2

´
=

³
1 2 3 4 5
1 2 3 4 5

´
= e

) r has order 6.

d e1 = e ) e has order 1.

e s =

³
1 2 3 4
4 1 2 3

´
6= e

s2 =

³
1 2 3 4
4 1 2 3

´³
1 2 3 4
4 1 2 3

´
=

³
1 2 3 4
3 4 1 2

´
6= e

s3 = s2s =

³
1 2 3 4
3 4 1 2

´³
1 2 3 4
4 1 2 3

´
=

³
1 2 3 4
2 3 4 1

´
6= e

s4 = s3s =

³
1 2 3 4
2 3 4 1

´³
1 2 3 4
4 1 2 3

´
=

³
1 2 3 4
1 2 3 4

´
= e

) s has order 4.

7 The elements of S4 are:³
1 2 3 4
1 2 3 4

´³
1 2 3 4
1 2 4 3

´³
1 2 3 4
1 3 2 4

´
³
1 2 3 4
1 3 4 2

´³
1 2 3 4
1 4 2 3

´³
1 2 3 4
1 4 3 2

´
³
1 2 3 4
2 1 3 4

´³
1 2 3 4
2 1 4 3

´³
1 2 3 4
2 3 1 4

´
³
1 2 3 4
2 3 4 1

´³
1 2 3 4
2 4 1 3

´³
1 2 3 4
2 4 3 1

´
³
1 2 3 4
3 1 2 4

´³
1 2 3 4
3 1 4 2

´³
1 2 3 4
3 2 1 4

´
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148 WORKED SOLUTIONS³
1 2 3 4
3 2 4 1

´³
1 2 3 4
3 4 1 2

´³
1 2 3 4
3 4 2 1

´
³
1 2 3 4
4 1 2 3

´³
1 2 3 4
4 1 3 2

´³
1 2 3 4
4 2 1 3

´
³
1 2 3 4
4 2 3 1

´³
1 2 3 4
4 3 1 2

´³
1 2 3 4
4 3 2 1

´
8 S = f1, 2g

a Let e =

³
1 2
1 2

´
, a =

³
1 2
2 1

´
These are the elements of S2.

b Cayley table: ¤ e a

e e a
a a e

Closure: The table contains only elements a and e

which are in S.
) S is closed under the operation.

Associative: (a ¤ a) ¤ a and a ¤ (a ¤ a)

= e ¤ a = a ¤ e

= a = a X

(a ¤ a) ¤ e and a ¤ (a ¤ e)

= e ¤ e = a ¤ a

= e = e X

(a ¤ e) ¤ a and a ¤ (e ¤ a)

= a ¤ a = a ¤ a

= e = e X

(e ¤ a) ¤ a and e ¤ (a ¤ a)

= a ¤ a = e ¤ e

= e = e X

(e ¤ e) ¤ a and e ¤ (e ¤ a)

= e ¤ a = e ¤ a

= a = a X

(e ¤ a) ¤ e and e ¤ (a ¤ e)

= a ¤ e = e ¤ a

= a = a X

(a ¤ e) ¤ e and a ¤ (e ¤ e)

= a ¤ e = a ¤ e

= a = a X

(e ¤ e) ¤ e and e ¤ (e ¤ e)

= e ¤ e = e ¤ e

= e = e X

All 8 possibilities are checked.

So, the operation is associative on S2.

Identity: The identity is e.

Inverse: e¡1 = e and a¡1 = a

) S2 is a group under composition of permutations.

c There is symmetry about the main diagonal

) the operation is commutative

) S2 is Abelian.

EXERCISE F.2

1 a (1 4 3 2) b (1 6 4)(2 5 3) c (1 5)(2 3)

d (1 6 2 3)(4 5) e (1 3) f (2 3 5)(4 6)

g (1 6)(2 4)(3 5)

2 a (1 2 3 4)(1 5)

= (1 5 2 3 4)

b (1 3)(1 2)(1 5)

= (1 5 2 3)

c (1 2 3)(1 4 2 3)

= (1 4 3 2)

d (1 6)(1 5)(1 4)(1 3)(1 2)

= (1 2 3 4 5 6)

3 a (1 3 2 4 5)¡1

= (5 4 2 3 1)

= (1 5 4 2 3)

fwriting 1 in position (1)g

b [(1 3 2)(4 5)]¡1

= (4 5)¡1(1 3 2)¡1

f(pq)¡1 = q¡1p¡1g
= (5 4)(2 3 1)

= (1 2 3)(4 5)

c [(1 3)(2 4 5)]¡1

= (2 4 5)¡1(1 3)¡1

= (5 4 2)(3 1)

= (1 3)(2 5 4)

d [(1 2 3)(1 4 5)]¡1

= (1 4 5)¡1(1 2 3)¡1

= (5 4 1)(3 2 1)

= (1 3 2 5 4)

e [(1 3)(1 4)(1 5)]¡1

= (1 5)¡1(1 4)¡1(1 3)¡1

= (5 1)(4 1)(3 1)

= (1 3 4 5)(2)

= (1 3 4 5)

f [(1 2 3)(1 5)]¡1

= (1 5)¡1(1 2 3)¡1

= (5 1)(3 2 1)

= (1 3 2 5)(4)

= (1 3 2 5)

4 p = (1 3 2 4), q = (1 2 3 5)

a p¡1 = (4 2 3 1)

= (1 4 2 3)

b q¡1 = (5 3 2 1)

= (1 5 3 2)

c (pq)¡1 = q¡1p¡1

= (1 5 3 2)(1 4 2 3)

= (1 4)(2)(3 5)

= (1 4)(3 5)

d q¡1pq = (1 5 3 2)(1 3 2 4)(1 2 3 5)

= (1 4 5 2)(3)

= (1 4 5 2)

e p¡2q¡1 = (1 4 2 3)(1 4 2 3)(1 5 3 2)

= (1 5 4 3)(2)

= (1 5 4 3)

f pr¡1 = q

) p¡1pr¡1 = p¡1q

) er¡1 = p¡1q

) (r¡1)¡1 = (p¡1q)¡1

) r = q¡1p

) r = (1 5 3 2)(1 3 2 4)

= (1 2 4 5 3)

5 a Let p = (1 4 3 2)

) p2 = (1 4 3 2)(1 4 3 2)

= (1 3)(2 4)

p3 = p2p = (1 3)(2 4)(1 4 3 2)

= (1 2 3 4)

p4 = p3p = (1 2 3 4)(1 4 3 2)

= (1)(2)(3)(4)

= e ) p has order 4

b Let p = (1 2)(1 3 4)

= (1 3 4 2)

p2 = (1 3 4 2)(1 3 4 2)

= (1 4)(2 3)
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WORKED SOLUTIONS 149

p3 = p2p = (1 4)(2 3)(1 3 4 2)

= (1 2 4 3)

p4 = p3p = (1 2 4 3)(1 3 4 2)

= (1)(2)(3)(4)

= e ) p has order 4

c Let p = (1 2 3)(2 3 4)

= (1 2)(3 4)

p2 = (1 2)(3 4)(1 2)(3 4)

= (1)(2)(3)(4)

= e ) p has order 2

6 a Let p = (1 2 3 4)(1 5)

= (1 5 2 3 4) ffrom 2 ag
) p has order 5 fTheorem 12g

b Let p = (1 3)(1 2)(1 5)

= (1 5 2 3) ffrom 2 bg
) p has order 4 fTheorem 12g

c Let p = (1 2 3)(1 4 2 3)

= (1 4 3 2) ffrom 2 cg
) p has order 4 fTheorem 12g

d Let p = (1 6)(1 5)(1 4)(1 3)(1 2)

= (1 2 3 4 5 6) ffrom 2 dg
) p has order 6 fTheorem 12g

7 a p = (1 3 2 4) is a cycle of length 4

) p4 = e

p5 = p4p = ep = p

p6 = p4p2 = ep2 = p2

) the Cayley table is: e p p2 p3

e e p p2 p3

p p p2 p3 e

p2 p2 p3 e p

p3 p3 e p p2

Closure: As all elements of the table are in G, G is

closed under the operation.

Associative: As permutations are functions and functions

are associative under composition, then,

permutations are associative under

composition.

Identity: e =

³
1 2 3 4
1 2 3 4

´
is the identity as

epi = pie = pi for i = 0, 1, 2, 3.

Inverse: e¡1 = e, p and p3 are inverses

fas pp3 = p3p = eg
and p2p2 = e

) p2 is its own inverse.

) e¡1 = e, p¡1 = p3, (p2)¡1 = p2,

and (p3)¡1 = p.

Hence, G is a group.

b i q = p2

= (1 3 2 4)(1 3 2 4)

= (1 2)(3 4)

ii p159 = (p4)39p3

= e39p3

= ep3

= p3

= p2p

= (1 2)(3 4)(1 3 2 4)

= (1 4 2 3)

iii q159 = (p2)159

= p318

= (p4)79p2

= e79p2

= ep2

= p2

= (1 2)(3 4)

iv p508 = (p4)127

= e127

= e

8 a

b

c

d

EXERCISE F.3

1 a e is an anticlockwise rotation

through 0± about O.

r is an anticlockwise rotation

through 90± about O.

r2 is an anticlockwise rotation

through 180± about O.

r3 is an anticlockwise rotation

through 270± about O.

We notice that r4 = e, and so the order of rotational

symmetry is 4.

b It has 4 lines of symmetry

1 - 3, A - C, 2 - 4, D - B.

c There are 8 symmetries of the square

e = (1)(2)(3)(4)

r = (1 4 3 2)

r2 = (1 3)(2 4)

r3 = (1 2 3 4)

l13 = (2 4)

l24 = (1 3)

lAC = (1 2)(3 4)

lDB = (1 4)(2 3)

d jej = 1, jrj =
¯̄
r3
¯̄
= 4,

¯̄
r2
¯̄
= 2, jl13j = jl24j = 2,

jlAC j = jlDB j = 2

e jD4j = 8 as there are 8 symmetries.

f jS4j = 4! = 24

1

4

2

3

O

1

4

2

3

O

A

B

C

D

order = LCM (3, 4, 5) = 60

order = LCM (2, 4, 5) = 20

order = LCM (2, 4, 8) = 8

order = LCM (7, 3, 6) = 42
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150 WORKED SOLUTIONS

2 a The 4 symmetries are:

e, an anticlockwise

rotation about O

through 0±;

r, an anticlockwise

rotation about O

through 180±;

R1 = lAC , a reflection in the line [AC];

R2 = lDB , a reflection in the line [DB].

e = (1)(2)(3)(4)

r = (1 3)(2 4)

R1 = (1 2)(3 4)

R2 = (1 4)(2 3)

b jej = 1, jrj = jR1j = jR2j = 2

We notice that r2 = R 2
1 = R 2

2 = e

c The Cayley table is: e r R1 R2

e e r R1 R2

r r e R2 R1

R1 R1 R2 e r

R2 R2 R1 r e

Closure: Each element of the Cayley table is in

G = fe, r, R1, R2g
) G is closed under the operation.

Associative: Follows from the associativity of composition

of permuations (which follows from the

associativity of bijective functions on a set).

Identity: ea = ae = a for all a 2 G
) e is the identity.

Inverse: e¡1 = e, r¡1 = r, R ¡1
1 = R1,

R ¡1
2 = R2.

d G is an Abelian group as the Cayley table is symmetric about

the main diagonal.

3 a e is an anticlockwise

rotation about O through 0±.

e = (1)(2)(3)(4)(5)
r1 is an anticlockwise

rotation about O through 72±

and r1 = (1 5 4 3 2).
r2 is an anticlockwise

rotation about O through

144± and r2 = (1 4 2 5 3).
r3 is an anticlockwise rotation about O through 216± and

r3 = (1 3 5 2 4).
r4 is an anticlockwise rotation about O through 288± and

r4 = (1 2 3 4 5).

R1 is a reflection in line O1 and R1 = (2 5)(3 4).

R2 is a reflection in line O2 and R2 = (1 3)(4 5).

R3 is a reflection in line O3 and R3 = (1 5)(2 4).

R4 is a reflection in line O4 and R4 = (1 2)(3 5).

R5 is a reflection in line O5 and R5 = (1 4)(2 3).

b jej = 1, jr1j = jr2j = jr3j = jr4j = 5,

jR1j = jR2j = jR3j = jR4j = jR5j = 2

c jD5j = 10

d jS5j = 5! = 120

4 The statement is true.

We need to find an element in Sn

which is not in Dn.

For n > 3 there is no symmetry of

the figure which fixes two vertices

and permutes the remaining vertices

in a cycle.

For example, (1)(2)(3 4 5 6 .... n)

is in Sn, but not in Dn.

EXERCISE G

1 a fR nf0g, £g is a group with identity e = 1.

R + µ R n f0g and R + is non-empty as 1 2 R +.

Suppose a, b 2 R +.

b¡1 =
1

b
fas b£ 1

b
= 1, the identityg

and ab¡1 = a£ 1

b
=

a

b
2 R +.

Hence, by the subgroup test, H < G.

b fR +, £g is a group with identity 1.

Q + µ R + and Q + is non-empty as 1 2 Q +.

Suppose
a

b
,
c

d
2 Q + then a, b, c, d 2 Z +.

Now

³
c

d

´¡1

=
d

c

n
since

c

d
£ d

c
= 1

o
and so

a

b
£
³
c

d

´¡1

=
a

b

d

c
=

ad

bc
> 0

and bc 6= 0 fas b 6= 0, c 6= 0g.

Thus
a

b
£
³
c

d

´¡1

2 Q +.

Hence, by the subgroup test, H < G.

c fZ n f0g, £g is not a group with identity 1.

For example, 2 has no inverse in Z n f0g.

) H 6< G.

d fZ 6, +6g is a finite group with identity 0.

H has Cayley table:

Clearly, H is closed under +6

) a+6 b 2 H for all a, b 2 H
) by the subgroup test for

finite groups, H < G.

+6 0 2 4

0 0 2 4
2 2 4 0
4 4 0 2

e fZ , +g is a group with identity 0.

H = fall multiples of 4g
If 4m, 4n 2 H, then (4n)¡1 = ¡4n and

4m+ (4n)¡1 = 4m¡ 4n

= 4(m¡ n) 2 H fas m¡ n 2 Z g
) by the subgroup test, H < G.

f From e, fG, +g is a group with identity 0.

For 8m, 8n 2 H, (8n)¡1 = ¡8n and

8m+ (8n)¡1 = 8m¡ 8n

= 8(m¡ n) 2 H fas m¡ n 2 Z g
) by the subgroup test, H < G.

g D3 has Cayley table:

) D3 is a finite

group with

identity e.

H µ D3 and

H is non-empty.

¤ e r r2 x y z

e e r r2 x y z

r r r2 e z x y

r2 r2 e r y z x

x x y z e r r2

y y z x r2 e r

z z x y r r2 e

1

4

2

3

O

A

B

C

D

O

1

2

34

5

n - 1

n
1

2

3

4

5
6

7

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_an\150IB_HL_OPT-SRG_an.cdr Tuesday, 13 August 2013 3:10:53 PM BRIAN



WORKED SOLUTIONS 151

The Cayley table for H,

where r3 = e, is:

¤ e r r2

e e r r2

r r r2 e

r2 r2 e r

H is closed under ¤ = composition of transformations.

) by the subgroup test for finite groups, H < G.

h H = fe, a, b, cg
has Cayley table:

¤ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

For example, c ¤ b = (1 4)(2 3) ¤ (1 3)(2 4)

= (1 2)(3 4)

= a

S4 is a finite group with identity e and H µ S4, and H is

non-empty.

H is closed under ¤
) by the subgroup test for finite groups, H < G.

fNote: H is the group of symmetries of a rectangle.g
i G = fC n f0g, £g is a group with identity 1.

H = Un µ C n f0g and Un is non-empty as 1 2 Un.

Since zzn¡1 = zn¡1z = 1, z¡1 = zn¡1 for all z in Un.

Now suppose z1, z2 2 Un, then

(z1z
¡1
2 )n = (z1z

n¡1
2 )n

= z n
1 (z n

2 )n¡1

= 1£ 1n¡1 = 1

) z1z
¡1
2 2 Un

Thus, by the subgroup test, H < G.

j fC , +g is a group with identity 0.

H µ C and H is non-empty as for example 1+
p
5i 2 H.

Consider a1 + ib1
p
5 and a2 + ib2

p
5 2 H

Now a2 + ib2
p
5 + (¡a2 ¡ ib2

p
5) = 0

) (a2 + ib2
p
5)¡1 = ¡a2 ¡ ib2

p
5

and so (a1 + ib1
p
5) + (a2 + ib2

p
5)¡1

= a1 + ib1
p
5¡ a2 ¡ ib2

p
5

= (a1 ¡ a2) + i(b1 ¡ b2)
p
5

which is 2 H as a1 ¡ a2, b1 ¡ b2 2 R
Thus, by the subgroup test, H < G.

2 a Closure: Suppose (a, b), (c, d) 2 S then

(a, b) ¤ (c, d) = (a + c, (¡1)cb + d) 2 S

as a+ c 2 Z and (¡1)cb+ d 2 Z
) S is closed under ¤.

Associative: Let (p, q), (r, s), (t, u) be in S.

) [(p, q) ¤ (r, s)] ¤ (t, u)

= (p+ r, (¡1)rq + s) ¤ (t, u)

= (p+ r + t, (¡1)t((¡1)rq + s) + u)

= (p+ r + t, (¡1)t+rq + (¡1)ts+ u)

and (p, q) ¤ [(r, s) ¤ (t, u)]

= (p, q) ¤ (r + t, (¡1)ts+ u)

= (p+ r + t, (¡1)r+tq + (¡1)ts+ u)

= [(p, q) ¤ (r, s)] ¤ (t, u)

) ¤ is associative on S.

Identity: Suppose (x, y) ¤ (a, b) = (a, b)

) (x+ a, (¡1)ay + b) = (a, b)

) x+ a = a and (¡1)ay + b = b

) x = 0 and (¡1)ay = 0 for all a

) x = 0 and y = 0

Thus (0, 0) ¤ (a, b) = (a, b) for all

(a, b) 2 S.

Also (a, b) ¤ (0, 0)

= (a+ 0, (¡1)0b+ 0)

= (a, b) for all (a, b) 2 S

) (0, 0) is the identity.

Inverse: Suppose (x, y) ¤ (a, b) = (0, 0)

) (x+ a, (¡1)ay + b) = (0, 0)

) x+ a = 0 and (¡1)ay + b = 0

) x = ¡a and y =
¡b

(¡1)a

) y = (¡1)1¡ab

) each element (a, b) has a unique inverse

(¡a, (¡1)1¡ab).

Check: (a, b) ¤ (¡a, (¡1)1¡ab)

= (a¡ a, (¡1)ab+ (¡1)1¡ab)

= (0, (¡1)¡a(b+ (¡1)b))

= (0, 0)

Thus fS, ¤g is a group.

b fS, ¤g is not Abelian as, for example,

(1, 3) ¤ (1, 0)

= (1 + 1, (¡1)13 + 0)

= (2, ¡3)

and (1, 0) ¤ (1, 3)

= (1 + 1, (¡1)10 + 3)

= (2, 3)

) (1, 3) ¤ (1, 0) 6= (1, 0) ¤ (1, 3)

) ¤ is not commutative

) fS, ¤g is not Abelian.

c i Suppose (a1, 0), (a2, 0) 2 H1

then from a (a2, 0)¡1 = (¡a2, (¡1)1¡a20)

= (¡a2, 0)

) (a1, 0) ¤ (a2, 0)¡1

= (a1, 0) ¤ (¡a2, 0)

= (a1 ¡ a2, (¡1)¡a2(0) + 0)

= (a1 ¡ a2, 0)

where a1 ¡ a2 2 Z since a1, a2 2 Z .

) by the subgroup test, H1 < S.

ii Suppose (0, b1), (0, b2) 2 H2

) (0, b2)
¡1 = (¡0, (¡1)1¡0b2)

= (0, ¡b2)

) (0, b1) ¤ (0, b2)
¡1

= (0, b1) ¤ (0, ¡b2)

= (0 + 0, (¡1)0b1 + (¡b2))

= (0, b1 ¡ b2)

where b1 ¡ b2 2 Z since b1, b2 2 Z .

) by the subgroup test, H2 < S.

iii As the identity (0, 0) =2 H3, H3 6< S.

3 fH1, ¤g and fH2, ¤g are subgroups of fG, ¤g
e 2 H1 and e 2 H2 ) e 2 H1 \H2

) H1 \H2 6= ?

) H1 \H2 is non-empty.
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152 WORKED SOLUTIONS

Since H1 µ G and H2 µ G then H1 \H2 µ G.

Suppose a, b 2 H1 \H2

then a ¤ b¡1 2 H1 as H1 < G

and a ¤ b¡1 2 H2 as H2 < G

) a ¤ b¡1 2 H1 \H2

Thus, by the subgroup test, H1 \H2 < G.

4 fG, ¤g is a group with identity e.

Since e ¤ a = a ¤ e = a then e 2 H

) H 6= ? and H µ G.

Suppose x, y 2 H ) y ¤ a = a ¤ y

Now y¡1 ¤ y ¤ a = y¡1 ¤ a ¤ y

) e ¤ a = y¡1 ¤ a ¤ y

) a = y¡1 ¤ a ¤ y

and so a ¤ y¡1 = y¡1 ¤ a ¤ y ¤ y¡1

) a ¤ y¡1 = y¡1 ¤ a ¤ e

) a ¤ y¡1 = y¡1 ¤ a .... (1)

) y¡1 2 H

Consider x ¤ y¡1

Now x ¤ y¡1 ¤ a = x ¤ a ¤ y¡1 ffrom (1)g
= a ¤ x ¤ y¡1 fx 2 Hg

) (x ¤ y¡1) ¤ a = a ¤ (x ¤ y¡1)

) x ¤ y¡1 2 H

Thus for all x, y 2 H, x ¤ y¡1 2 H.

Hence, by the subgroup test, H < G.

5 G is Abelian and H < G

S = fx j x 2 G, x2 2 Hg
To prove: S < G

Proof: If e is the identity of G, e2 = e 2 S.

Thus S 6= ?.

By definition, S µ G.

Suppose x, y 2 S, then y2 2 H

) (y2)¡1 2 H fas H < Gg
) y¡2 2 H

) (y¡1)2 2 H

) y¡1 2 S fas y¡1 2 G and (y¡1)2 2 Hg
Consider xy¡1 2 G fG is closedg
Now (xy¡1)2 = xy¡1xy¡1

= xxy¡1y¡1 fG is Abeliang
= x2(y¡1)2

which is in H as x2, (y¡1)2 2 H and H is a group.

) xy¡1 2 S

Thus, by the subgroup test, S < G.

6 a ® = 1p
2
+ 1p

2
i = cis

¡
¼
4

¢
®2 = cis

¡
¼
2

¢
= i

®3 = cis
¡
3¼
4

¢
= ¡ 1p

2
+ 1p

2
i

®4 = cis (¼) = ¡1

®5 = cis
¡
5¼
4

¢
= ¡ 1p

2
¡ 1p

2
i

®6 = cis
¡
3¼
4

¢
= ¡i

®7 = cis
¡
7¼
4

¢
= 1p

2
¡ 1p

2
i

®8 = cis 2¼ = 1

Let H = f1, ®, ®2, ®3, ®4, ®5, ®6, ®7g
) fH, £g µ fC n f0g, £g, a group

1 is the identity of H and C n f0g

We notice that

½
®i®8¡i = ®8 = 1

®8¡i®i = ®8 = 1

) (®i)¡1 = ®8¡i

and if ®i, ®j 2 H,

®i(®j)¡1 = ®i®8¡j

= ®8¡j+i

2 H f®9 = ®8® = ®, ®10 = ®2, etc.g
Thus, by the subgroup test, H < G
) H is a group.

b As ®8 = 1 where 8 is the smallest integer where ®n = 1,

the order of H is 8.

c i G = fC n f0g, £g
ii If ¯ = cis

¡
¼
8

¢
, then let G = f1, ¯, ¯2, ...., ¯15g

¯2 = ®
) H < G

7 For a, b 2 H, a = xn and b = xm for some n, m 2 Z +

) ab = xnxm = xn+m

Thus ab 2 H fas n+m 2 Z+g
) H is closed under ¤.

So, by the subgroup test for finite groups, H < G

) fH, ¤g is a group.

EXERCISE H

1 Z 12 = f0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11g
a 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 12 ´ 0

) j1j = 12
2 + 2 + 2 + 2 + 2 + 2 = 12 ´ 0
) j2j = 6
3 + 3 + 3 + 3 = 12 ´ 0
) j3j = 4
4 + 4 + 4 = 12 ´ 0
) j4j = 3
5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 60 ´ 0
) j5j = 12

etc. with j6j = 2

j7j = 12

j8j = 3

j9j = 4

j10j = 6

j11j = 12

b i fh4i, +12g where h4i = f0, 4, 8g
ii fh3i, +12g where h3i = f0, 3, 6, 9g

c Let h2i = f0, 2, 4, 6, 8, 10g.

h2i is a non-empty subset of Z 12, and since fZ 12, +12g
is a finite group we need to show h2i is closed under +12.

+12 0 2 4 6 8 10

0 0 2 4 6 8 10
2 2 4 6 8 10 0
4 4 6 8 10 0 2
6 6 8 10 0 2 4
8 8 10 0 2 4 6
10 10 0 2 4 6 8

As each element

in the Cayley

table 2 h2i
h2i< fZ 12, +12g.

d i As 1, 5, 7, and 11 are the elements of order 12, they are

the generators of fZ 12, +12g.

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_an\152IB_HL_OPT-SRG_an.cdr Tuesday, 13 August 2013 3:11:32 PM BRIAN



WORKED SOLUTIONS 153

ii As 2 and 10 are the elements of order 6, they are the

generators of fh2i, +12g.

2 a ff2, 4, 6, 8g, £10g
i As 21 = 2, 22 = 4, 23 = 8, 24 = 6 the group is

cyclic.

) h2i = ff2, 4, 6, 8g, £10g is cyclic.

ii 2 and 8 are generators.

b ff1, 3, 5, 7g, £8g
i As 32 = 1

52 = 1

72 = 1

the group is

not cyclic.

ii The subgroups are:

ff1g, £8g
ff1, 3g, £8 g
ff1, 5g, £8 g
ff1, 7g, £8 g

)
proper

subgroups

ff1, 3, 5, 7g, £8g

3 a n = 3, G = f1, 2g under £3.

The identity 1 is not a generator.

22 = 1
) G = h2i and 2 is the unique generator.

b n = 5, G = f1, 2, 3, 4g under £5.

The identity 1 is not a generator.

21 = 2, 22 = 4, 23 = 3, 24 = 1 X

31 = 3, 32 = 4, 33 = 2, 34 = 1 X

41 = 4, 42 = 1

) 2 and 3 are generators of G
) G = h2i = h3i.

c n = 7, G = f1, 2, 3, 4, 5, 6g under £7.

The identity 1 is not a generator.

21 = 2, 22 = 4, 23 = 1

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 X

41 = 4, 42 = 2, 43 = 1

51 = 5, 52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1 X

61 = 6, 62 = 1

j1j = 1, j2j = j4j = 3, j3j = j5j = 6, j6j = 2
) 3 and 5 are generators of G
) G = h3i = h5i.

d n = 11, G = f1, 2, 3, 4, 5, 6, 7, 8, 9, 10g under £11.

The identity 1 is not a generator.

21 = 2, 22 = 4, 23 = 8, 24 = 5, 25 = 10, 26 = 9,

27 = 7, 28 = 3, 29 = 6, 210 = 1 X

31 = 3, 32 = 9, 33 = 5, 34 = 4, 35 = 1

41 = 4, 42 = 5, 43 = 9, 44 = 3, 45 = 1

51 = 5, 52 = 3, 53 = 4, 54 = 9, 55 = 1

61 = 6, 62 = 3, 63 = 7, 64 = 9, 65 = 10, 66 = 5,

67 = 8, 68 = 4, 69 = 2, 610 = 1 X

71 = 7, 72 = 5, 73 = 2, 74 = 3, 75 = 10, 76 = 4,

77 = 6, 78 = 9, 79 = 8, 710 = 1 X

81 = 8, 82 = 9, 83 = 6, 84 = 4, 85 = 10, 86 = 3,

87 = 2, 88 = 5, 89 = 7, 810 = 1 X

91 = 9, 92 = 4, 93 = 3, 94 = 5, 95 = 1

101 = 10, 102 = 1

) j1j = 1, j10j = 2, j3j = j4j = j5j = j9j = 5,

j2j = j6j = j7j = j8j = 10
) 2, 6, 7, and 8 are generators of G and

G = h2i = h6i = h7i = h8i.

4 G is a finite cyclic group under ¤
g is a generator of G

) G = hgi and jgj = jGj = n

Since G is a group, g 2 G ) g¡1 2 G

and
¯̄
g¡1
¯̄
= jgj fExercise E.2, question 5 bg

)
¯̄
g¡1
¯̄
= n

) g¡1, (g¡1)2, (g¡1)3, (g¡1)4, ...., (g¡1)n¡1, (g¡1)n are

n distinct elements of G with (g¡1)n = e.

But G has only n distinct elements

) G =
−
g¡1
®

.

5 Let r be an anticlockwise rotation through
2¼

n
radians.

ri = a rotation through
2¼i

n
radians for

i = 0, 1, 2, 3, 4, 5, ...., n¡ 1

Thus, R = fe, r, r2, r3, r4, ...., rn¡1g
Note: rn = a rotation through 2¼ radians

= e

By Exercise G question 7, R is a group.

So, R is a cyclic subgroup of Dn, and r is a generator of R.

6 fG, ¤g is an Abelian group of order 6.

a The identity is e and it contains ® where ®2 = e and ¯

where ¯3 = e.

) G = fe, ®, ¯, ¯2, ®¯, ®¯2g
b The Cayley table is:

¤ e ® ¯ ¯2 ®¯ ®¯2

e e ® ¯ ¯2 ®¯ ®¯2

® ® e ®¯ ®¯2 ¯ ¯2

¯ ¯ ®¯ ¯2 e ®¯2 ®

¯2 ¯2 ®¯2 e ¯ ® ®¯

®¯ ®¯ ¯ ®¯2 ® ¯2 e

®¯2 ®¯2 ¯2 ® ®¯ e ¯

c jej = 1

®2 = 1, ) j®j = 2

¯3 = 1, ) j¯j = 3

(¯2)1 = ¯2, (¯2)2 = ¯4 = ¯

(¯2)3 = (¯3)2 = e2 = e

)
¯̄
¯2
¯̄
= 3

(®¯)1 = ®¯, (®¯)2 = ®2¯2 = e¯2 = ¯2

) (®¯)3 = ®3¯3 = ®®2¯3 = ®ee = ®

(®¯)4 = (®¯)3(®¯) = ®®¯ = ®2¯ = e¯ = ¯

(®¯)5 = (®¯)4(®¯) = ¯®¯ = ®¯2

(®¯)6 =
£
(®¯)3

¤ 2
= ®2 = e

) j®¯j = 6

From the table, (®¯)(®¯2) = e

) ®¯2 = (®¯)¡1

)
¯̄
®¯2
¯̄
= j®¯j = 6

d Since G is a finite group of order 6 and j®¯j = 6 and¯̄
®¯2
¯̄
= 6, G must be cyclic with generators ®¯ and ®¯2

) G = h®¯i =
−
®¯2
®

.

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_an\153IB_HL_OPT-SRG_an.cdr Thursday, 15 August 2013 4:21:32 PM BRIAN



154 WORKED SOLUTIONS

e From the Cayley table

ffe, ¯, ¯2g, ¤g is a

unique subgroup of order 3.

¤ e ¯ ¯2

e e ¯ ¯2

¯ ¯ ¯2 e

¯2 ¯2 e ¯

f Since ®¯ ¤¯ = ®¯2 =2 S where S = fe, ®, ¯, ®¯g, S is

not closed under ¤.
) S ¥ G.

7 a i1 = i, i2 = ¡1, i3 = ¡i, i4 = 1
) the order of hii is 4.

b Let ® = 1
2
+ i

p
3
2

= cis
¡
¼
3

¢
then ®6 =

£
cis
¡
¼
3

¢¤ 6
= cis (2¼) = 1, and 6 is the least

positive integer n such that ®n = 1.

) the order of

D
1
2
+ i

p
3
2

E
is 6.

c Let ® =
p
3
2

+ i
2
= cis

¡
¼
6

¢
then ®12 =

£
cis
¡
¼
6

¢¤ 12
= cis (2¼) = 1, and 12 is the

least positive integer n such that ®n = 1.

) the order of

Dp
3

2
+ i

2

E
is 12.

d Let ® =
p
3 + i = 2

³p
3
2

+ i
2

´
= 2 cis

¡
¼
6

¢
®n = 2n cis

¡
n¼
6

¢
and there is no n 2 Z + such that

®n = 1.

)
−p

3 + i
®

has infinite order.

8 G = hgi is a cyclic group of order 12 with generator g.

a
−
g4
®
= fg4, g8, g12 = eg

)
−
g4
®
µ G

The Cayley table is: ¤ e g4 g8

e e g4 g8

g4 g4 g8 e

g8 g8 e g4

and a, b 2
−
g4
®
) ab 2

−
g4
®

.

So, by the subgroup test for finite groups
−
g4
®
< G, and¯̄−

g4
®¯̄

= 3.

b i (g2)6 = 1 and 6 is the least positive integer n such that

(g2)n = 1.

) order of
−
g2
®
= 6.

ii (g3)4 = 1 likewise

) order of
−
g3
®
= 4.

iii (g6)2 = 1 likewise

) order of
−
g6
®

is 2.

EXERCISE I

1 a f(x) = x2

) f(x+ y) = (x+ y)2

= x2 + 2xy + y2

= f(x) + f(y) + 2xy

) f(x+ y) 6= f(x) + f(y) for all x, y 2 fR , +g
) f is not a homomorphism.

b f(x+ y) = 7(x+ y)

= 7x+ 7y

= f(x) + f(y) for all x, y 2 fR , +g
) f is a homomorphism.

i 0 is the identity in fR , +g
) Ker(f) = fa j f(a) = 0g

= fa j 7a = 0g
= f0g

and R(f) = ff(a) j a 2 R g
= f7a j a 2 R g
= R

ii Now since Ker(f) = f0g, the identity of the domain

group, then f is one-to-one.

Since R(f) = R , f is onto.

Thus f is an isomorphism.

c f(x) = x2

f(xy) = (xy)2

= x2y2 f£ is commutativeg
= f(x)f(y)

) f is a homomorphism.

i The identity in fR n f0g, £g is 1

) Ker(f) = fa j f(a) = 1g
= fa j a2 = 1g
= f1, ¡1g

and R(f) = ff(a) j a 2 R n f0gg
= fa2 j a 2 R n f0gg
= R +

ii As R(f) = R + 6= R n f0g, f is not onto.

) f is not an isomorphism.

d f(x) = x2

f(xy) = (xy)2

= x2y2 f £ is commutativeg
= f(x)f(y)

) f is a homomorphism.

i The identity in fR +, £g is 1

) Ker(f) = fa j a 2 R + and f(a) = 1g
= fa j a 2 R + and a2 = 1g
= f1g f¡1 =2 R +g

and R(f) = ff(a) j a 2 R +g
= fa2 j a 2 R +g
= R +

ii Ker(f) = f1g, the identity of the domain group

fR +, £g ) f is one-to-one.

Also, R(f) = R +, ) f is onto.

Thus, as f is a homomorphism which is one-to-one and

onto, f is an isomorphism.

e f(x) = ex f(x+ y) = ex+y

= exey

= f(x)f(y)

) f is a homomorphism.

i The identity of fR , £g is 1

) Ker(f) = fa j a 2 R , f(a) = 1g
= fa j a 2 R , ea = 1g
= f0g

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_an\154IB_HL_OPT-SRG_an.cdr Tuesday, 13 August 2013 4:17:53 PM BRIAN



WORKED SOLUTIONS 155

and R(f) = ff(a) j a 2 R g
= fea j a 2 R g
= R +

ii Ker(f) = f0g, the identity of the domain group fR , +g
) f is one-to-one.

Also, R(f) = R +, ) f is onto.

Thus, as f is a homomorphism which is one-to-one and

onto, f is an isomorphism.

f f(x) = 5x

f(x+ y) = 5(x+ y)

= 5x+ 5y

= f(x) + f(y)

) f is a homomorphism.

i The identity of f5Z , +g is 0

) Ker(f) = fa j a 2 Z , f(a) = 0g
= fa j a 2 Z , 5a = 0g
= f0g

and R(f) = ff(a) j a 2 Z g
= f5a j a 2 Z g
= 5Z , all integer multiples of 5

ii Ker(f) = f0g, the identity of fZ , +g
) f is one-to-one.

Also, R(f) = 5Z , ) f is onto.

Thus, as f is a homomorphism which is one-to-one and

onto, f is an isomorphism.

g f(x) = x (mod 5)

f(a) +5 f(b) = a (mod 5) +5 b (mod 5)

= [a (mod 5) + b (mod 5)] (mod 5)

= a+ b (mod 5)

= f(a+ b)

f is a homomorphism.

i The identity of fZ 5, +5g is 0

) Ker(f) = fa j a 2 Z , f(a) = 0g
= fa j a 2 Z , a (mod 5) = 0g
= f0, 5, 10, 15, ....g

and R(f) = ff(a) j a 2 Z g

= Z 5

ii As Ker(f) 6= f0g, f is not one-to-one.

Hence f is not an isomorphism.

h f(®¯) = (®¯)2

= ®¯®¯

6= ®®¯¯ fas S3 is not Abeliang
) 6= ®2¯2

) 6= f(®)f(¯)

) f is not a homomorphism.

2 f : fP , +g ! fP , +g and f(p(x)) = p0(x)
a For p(x), q(x) 2 P

f(p(x) + q(x))

=
d

dx
(p(x) + q(x))

= p0(x) + q0(x) frule of differentiationg
= f(p(x)) + f(q(x))

) f is a homomorphism.

b The identity of fP , +g is the zero polynomial,

0 fwhich is actually 0x+ 0, etc.g
i Ker(f) = fp(x) j p(x) 2 P and f(p(x)) = 0g

= fp(x) j p(x) 2 P and p0(x) = 0g
= fc where c 2 R g

which is the set of all constant functions on R .

ii R(f) = ff(p(x)) j p(x) 2 Pg
= fp0(x) j p(x) 2 Pg

Each polynomial q(x) in P has an antiderivative

p(x) =
R

q(x) dx, where p(x) 2 P and

p0(x) = q(x).

) R(f) = P .

c Ker(f) < fP , +g, the domain group

) ffp(x) = c, c 2 R g, +g forms an additive subgroup

of fP , +g.

This is a proper subgroup of fP , +g as the only improper

subgroups are ff0g, +g and fP , +g.

d f is not an isomorphism since, for example f(3) = f(4)

= 0

for polynomials p(x) = 3 and q(x) = 4 2 fP , +g.

3 f(G) = ff(g) j g 2 Gg for f : f(G, ¤) ! (H, ±)g
a f(G) = ff(g) j g 2 Gg = R(f)

) f(G) is the range of f .

By Theorem 23, R(f) < H and ) f(G) < H.

) f(G) is a group.

b G is Abelian
) a ¤ b = b ¤ a for all a, b 2 G

) f(a ¤ b) = f(b ¤ a)

) f(a) ± f(b) = f(b) ± f(a) fas f is a homomorphismg
) f(G) is Abelian

c If G = hgi is cyclic with generator g then

G = fgn j n 2 Z g
= feG, g, g2, g3, ...., g¡1, g¡2, g¡3, ....g

and f(G) = ff(eG), f(g), f(g2), ....g
= ff(gn) j n 2 Z g
= ff(g ¤ g ¤ g ¤ :::: ¤ g| {z }

n times

) j n 2 Z g

= ff(g) ± f(g) ± f(g) ± :::: ± f(g)| {z }
n times

j n 2 Z g

= f(f(g))n j n 2 Z g
= hf(g)i

) f(G) is cyclic with generator f(g) 2 H.

d The statement is false in general.

As jgj = m, gm = eG

) f(gm) = f(eG)

) f(g ¤ g ¤ g ¤ :::: ¤ g| {z }
m times

) = eH

) f(g) ± f(g) ± f(g) ± :::: ± f(g)| {z }
m times

= eH

) (f(g))m = eH

) order of f(g) is a factor of m

Also f : fG, ¤g ! fG, ¤g where f(g) = eG is a

homomorphism and jf(g)j = jeGj = 1 for all g 2 G.

But jgj 6= 1 for all g 2 G if G 6= feGg.

= fa (mod 5) j a 2 Z g
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156 WORKED SOLUTIONS

EXERCISE J

1 f : ff0, 1, 2g, +3g ! ff1, 2, 4g, £7g
+3 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

0 7! 1

1 7! 2

2 7! 4

£7 1 2 4

1 1 2 4
2 2 4 1
4 4 1 2

f is a bijection and for all a, b 2 G, f(a+3 b) = f(a)£7 f(b).

As the Cayley tables have the same structure,

ff0, 1, 2g, +3g »= ff1, 2, 4g, £7g
2 If ® = ¡ 1

2
+ i

p
3
2

= cis
¡
2¼
3

¢
,

®2 = cis
¡
4¼
3

¢
= ¡ 1

2
¡ i

p
3

2
and

®3 = cis 2¼ = 1

Thus G = ff1, ®, ®2g, £g
£ 1 ® ®2

1 1 ® ®2

® ® ®2 1

®2 ®2 1 ®

1 7! 1

® 7! 2

®2 7! 4

£7 1 2 4

1 1 2 4

2 2 4 1

4 4 1 2

f is a bijection and for all a, b 2 G, f(ab) = f(a)£7 f(b).

As the Cayley tables have the same structure,

ff1, ®, ®2g, £g »= ff1, 2, 4g, £7g
3 G = f0, 1, 2, 3, 4g under +5

H = f1, ®, ®2, ®3, ®4g where ® = cis
¡
2¼
5

¢
under £

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

£ 1 ® ®2 ®3 ®4

1 1 ® ®2 ®3 ®4

® ® ®2 ®3 ®4 1

®2 ®2 ®3 ®4 1 ®

®3 ®3 ®4 1 ® ®2

®4 ®4 1 ® ®2 ®3

0 7! 1, 1 7! ®, 2 7! ®2, 3 7! ®3, 4 7! ®4

f is a bijection and for all a, b 2 G, f(a+5 b) = f(a)f(b)

) fG, +5g »= fH, £g
4 a In G, 21 = 2, 22 = 4, 23 = 8, 24 = 6

) G = h2i
In H, 12 = 1, 32 = 1, 52 = 1, 72 = 1
) no element has order 4
) H is not cyclic.

Hence G 6»= H.

b Suppose f(x) = nx for all x 2 G, n 2 Z+.

Then f(x) = f(y) , nx = ny

, x = y fn 6= 0g
) f is one-to-one.

The range of f , R(f) = fnx j x 2 Z g
= nZ

) f is onto.

As f is one-to-one and onto it is a bijection.

For x, y 2 Z , f(x+ y) = n(x+ y)

= nx+ ny

= f(x) + f(y)

Thus f is a bijective homomorphism

) f is an isomorphism.

Thus G »= H.

c jGj = 6 and jS6j = 6! = 720.

As G and S6 have different orders their elements cannot be

put into a one-to-one correspondence.

) G 6»= H.

d G = fZ 6, +6g is cyclic as G = h1i.
But, H is not cyclic. ) G 6»= H.

e G = hii = f1, i, ¡1, ¡ig is a finite cyclic group.

H = h1 + ii =
−p

2 cis
¡
¼
4

¢®
and£p

2 cis
¡
¼
4

¢¤ n
= 2

n

2 cis
¡
n¼
4

¢
6= 1 for any n 2 Z +

) h1 + ii has infinite order

) H is an infinite group

) G 6»= H fas G is finite, H infiniteg.

Their elements cannot be put in a one-to-one correspondence.

5 We define f by f : fR +, £g ! fR , +g, f(x) = lnx

(1) If f(x) = f(y) then lnx = ln y

) lnx¡ ln y = 0

) ln

µ
x

y

¶
= 0

)
x

y
= e0 = 1

) x = y
) f is one-to-one.

(2) No horizontal line cuts the

increasing function f in

more than one place.

) f is onto.

(3) Also for all a, b 2 R +, f(ab) = ln(ab)

= lna+ ln b

= f(a) + f(b)

From (1), (2), and (3), f is a bijective homomorphism.

) f is an isomorphism.

) fR +, £g »= fR , +g
6 Let f : fG, ¤g ! fH, ±g be an isomorphism and suppose

g 2 G has finite order m 2 Z +.

) gm = eG

) f(gm) = f(eG) = eH

) f(g ¤ g ¤ g ¤ :::: ¤ g| {z }
m of these

) = eH

) f(g) ± f(g) ± f(g) ± :::: ± f(g)| {z }
m of these

= eH

) [f(g)]m = eH

Now suppose f(g) has order n < m, n 2 Z +

) [f(g)]n = eH

) f(g) ± f(g) ± f(g) ± :::: ± f(g) = eH

) f(g ¤ g ¤ g ¤ :::: ¤ g) = eH

) f(gn) = eH

) gn = eG

fas f is an isomorphism, eG is unique and maps to eHg
This is a contradiction as jgj = m and n < m, n 2 Z+

) jgj = jf(g)j
Thus, the order of g is unchanged by the isomorphism.

y

x

y = f(x)
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WORKED SOLUTIONS 157

7 fG, ¤g and fH, ±g are isomorphic.

To prove: fG, ¤g is Abelian , fH, ±g is Abelian

() ) fG, ¤g Abelian

) a ¤ b = b ¤ a for all a, b 2 G

) f(a ¤ b) = f(b ¤ a)

) f(a) ± f(b) = f(b) ± f(a)

for all f(a), f(b) 2 R(f) = H

) H is Abelian.

(( ) Since f¡1 is an isomorphism from H to G, fH, ±g
Abelian would imply that fG, ¤g is Abelian.

Thus fG, ¤g is Abelian , fH, ±g is Abelian.

8 a The Cayley table for D3 is:

± e r r2 x y z

e e r r2 x y z

r r r2 e z x y

r2 r2 e r y z x

x x y z e r r2

y y z x r2 e r

z z x y r r2 e

and for S3 is:

¤ e ® ®2 ¯ ° ±

e e ® ®2 ¯ ° ±

® ® ®2 e ± ¯ °

®2 ®2 e ® ° ± ¯

¯ ¯ ° ± e ® ®2

° ° ± ¯ ®2 e ®

± ± ¯ ° ® ®2 e

e 7! e, r 7! ®, r2 7! ®2, x 7! ¯, y 7! °, z 7! ±
f is a bijection.

And, as the Cayley tables have the same structure D3
»= S3.

b For n 2 Z +, n > 3 the finite groups Dn and Sn have

different orders.
The order of Dn = 2n
The order of Sn = n!
) they cannot be isomorphic.

) Dn À Sn for n > 3.

9 fG1, ¤g and fG2, Mg are isomorphic.

fG2, Mg and fG3, ¤g are also isomorphic.

) G1
»= G2 and G2

»= G3

To prove: G1
»= G3

Proof:

If G1
»= G2, there exists an isomorphism f : G1 ! G2.

If G2
»= G3, there exists an isomorphism g : G2 ! G3.

f and g are one-to-one, onto, and are homomorphisms.

Consider g ± f : G1 ! G3

) (g ± f)(a ¤ b) = g(f(a ¤ b))

= g(f(a) M f(b))

= g(f(a)) ¤ g(f(b))

= (g ± f)(a) ¤ (g ± f)(b)

) g ± f is a homomorphism from G1 to G3.

Now as f and g are one-to-one and onto, g ± f is one-to-one

and onto.

) g ± f is an isomorphism from G1 to G3.

) G1
»= G3

10 a R is the group of

symmetries of a

rectangle and has

Cayley table:

e r R1 R2

e e r R1 R2

r r e R2 R1

R1 R1 R2 e r

R2 R2 R1 r e

Let e =

³
1 2 3 4
1 2 3 4

´
, a = (1 2)(3 4)

b = (1 3)(2 4), c = (1 4)(2 3)

G has Cayley table:

¤ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

For example,

a ¤ c

= (1 2)(3 4) ¤ (1 4)(2 3)

= (1 3)(2 4)

= b

For example, c ¤ b = (1 4)(2 3) ¤ (1 3)(2 4)

= (1 2)(3 4)

= a

e 7! e, r 7! a, R1 7! b, R2 7! c
f is one-to-one and onto and is a homomorphism since the

two tables have the same structure.

) f is an isomorphism.

) R »= G

b The Klein 4-group V4

has Cayley table:

i p q r

i i p q r

p p i r q

q q r i p

r r q p i

G Klein 4

e 7! i

a 7! p

b 7! q

c 7! r

) G $ Klein 4 is one-to-one, onto, and a homomorphism

since the tables have the same structure.
) G »= Klein 4

c R »= G and G »= Klein 4
) from question 9, R »= Klein 4

EXERCISE K

1 fH = f0, 3g, +6g < fZ 6, +6g
a The left cosets of H in Z 6 are:

0H = f0 +6 h j h 2 Hg
= f0 +6 0, 0 +6 3g
= f0, 3g
= H

1H = f1 +6 h j h 2 Hg
= f1 +6 0, 1 +6 3g
= f1, 4g

2H = f2 +6 0, 2 +6 3g
= f2, 5g

3H = f3 +6 0, 3 +6 3g
= f3, 0g
= H

4H = f4 +6 0, 4 +6 3g
= f4, 1g
= f1, 4g

5H = f5 +6 0, 5 +6 3g
= f5, 2g
= f2, 5g

Hence H has three distinct left cosets in Z 6:

f0, 3g = H, f2, 5g, and f1, 4g

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_an\157IB_HL_OPT-SRG_an.cdr Thursday, 15 August 2013 4:23:18 PM BRIAN



158 WORKED SOLUTIONS

b As fZ 6, +6g is Abelian, the right cosets are the same as

the corresponding left cosets.

) H has three distinct right cosets in Z 6:

f0, 3g = H, f2, 5g, and f1, 4g

2 H = f0, 4, 8g under +12 < fZ 12, +12g
a The left cosets of H in Z 12 are:

0H = f0 +12 0, 0 +12 4, 0 +12 8g
= f0, 4, 8g
= H

1H = f1 +12 0, 1 +12 4, 1 +12 8g
= f1, 5, 9g

2H = f2 +12 0, 2 +12 4, 2 +12 8g
= f2, 6, 10g

3H = f3 +12 0, 3 +12 4, 3 +12 8g
= f3, 7, 11g

4H = f4 +12 0, 4 +12 4, 4 +12 8g
= f4, 8, 0g
= H

5H = f5 +12 0, 5 +12 4, 5 +12 8g
= f5, 9, 1g

6H = f6 +12 0, 6 +12 4, 6 +12 8g
= f6, 10, 2g

7H = f7 +12 0, 7 +12 4, 7 +12 8g
= f7, 11, 3g

8H = f8 +12 0, 8 +12 4, 8 +12 8g
= f8, 0, 4g
= H

9H = f9 +12 0, 9 +12 4, 9 +12 8g
= f9, 1, 5g

10H = f10 +12 0, 10 +12 4, 10 +12 8g
= f10, 2, 6g

11H = f11 +12 0, 11 +12 4, 11 +12 8g
= f11, 3, 7g

) H has four distinct left cosets in Z 12:

f0, 4, 8g = H, f1, 5, 9g, f2, 6, 10g, f3, 7, 11g.

b As fZ 12, +12g is Abelian, the right cosets of H are the

same as the left cosets.

Proof: For g 2 Z 12,

g +12 H = fg +12 h j h 2 Hg
= fh+12 g j h 2 Hg
= H +12 g

) each left coset of H is also a right coset.

3 a As jS4j ¥ jRj = 4!¥ 4 = 6, there are 6 left cosets of R

in S4.

b 1, the subgroup R itself.

c (1 2 3)(1 2 3 4)¡1

= (1 2 3)(4 3 2 1)

= (1 4)(2)(3) =2 R

) by Theorem 26 parts 3 and 4,

(1 2 3)R \ (1 2 3 4)R = ?, so they have no elements

in common.

d (12)R = f(1 2)e, (1 2)(1 2)(3 4),

(1 2)(1 3)(2 4), (1 2)(1 4)(2 3)g
= f(1 2), (3 4), (1 3 2 4), (1 4 2 3)g

R(12) = fe(1 2), (1 2)(3 4)(1 2),

(1 3)(2 4)(1 2), (1 4)(2 3)(1 2)g
= f(1 2), (3 4), (1 4 2 3), (1 3 2 4)g

) (1 2)R = R(1 2)

4 If gH = Hg for all g 2 G.

As G is a group and g 2 G, g¡1 exists.

Multiplying on the left by g¡1 gives g¡1gH = g¡1Hg

) eH = g¡1Hg

) H = g¡1Hg

Multiplying on the right by g¡1 gives Hg¡1 = g¡1Hgg¡1

) Hg¡1 = g¡1He

) Hg¡1 = g¡1H

5 jS5j = 5! = 120 and 120 is not a multiple of 7.

) by Lagrange’s theorem, S5 can have no subgroup of order 7.

6 For any m 2 Z+, m 6 n, consider the symmetric group Sm

of degree m.

Elements of Sm permute the values 1, 2, ...., m, whilst keeping

m+ 1, m+ 2, ...., n fixed. ) Sm µ Sn.

) Sm < Sn and jSmj = m!

7 Given: jGj = 36 and G has identity e.

Consider g 2 G

jgj is a factor of jGj = 36

) jgj = 1, 2, 3, 4, 6, 9, 12, 18, or 36

fCorollary of Lagrange’s theoremg
Since g7 = e, 7 = k jgj for some k 2 Z +

) jgj = 1

) g = e

Thus e is the unique element of G such that g7 = e.

8 Let G be a group with prime order.

That is G is a group with jGj = p.

As p > 2, jGj > 2

) there exists an element g 2 G which is not the identity

element e of G.

Let m = jgj > 1, m 2 Z +.

The group hgi = fe, g, g2, g3, ...., gm¡1g is a subgroup of G

and jhgij = jgj = m > 1

) by Lagrange’s theorem jGj is a multiple of jhgij
) p is a multiple of m where m > 1.

But p is prime and so m = p.

Since jhgij = jGj = p is finite, G = hgi
) G is cyclic with generator g.

REVIEW SET A

1 A = fa, b, c, d, e, fg, B = fc, e, g, hg
a A [B = fa, b, c, d, e, f , g, hg
b AnB = fa, b, d, fg
c A¢B = (AnB) [ (BnA)

= fa, b, d, fg [ fg, hg
= fa, b, d, f , g, hg

Check:

X

A B
a

b
c

d e
f

g

h

U
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WORKED SOLUTIONS 159

2 A = f1, 2, 3g, B = f2, 4g
A£B = f(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4)g

3 To prove: (A \B)£ (C \D) = (A£ C) \ (B £D)

Proof:

() ) Let (x, y) 2 (A \ B) £ (C \ D) then x 2 A and

x 2 B and y 2 C and y 2 D

) (x, y) 2 A£C and (x, y) 2 B £D

) (x, y) 2 (A£C) \ (B £D)

) (A\B)£ (C \D) µ (A£C)\ (B£D) .... (1)

(( ) Let (x, y) 2 (A£C) \ (B £D)

) (x, y) 2 A£C and (x, y) 2 B £D

) x 2 A and y 2 C and x 2 B and y 2 D

) x 2 A \B and y 2 C \D

) (x, y) 2 (A \B)£ (C \D)

) (A£ C) \ (B £D) µ (A \B)£ (C \D) .... (2)

From (1) and (2), (A\B)£ (C \D) = (A£C)\ (B £D)

4 a f(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 1), (1, 0),

(0, 2), (2, 0), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2),

(2, 4), (4, 2), (3, 5), (5, 3), (4, 5), (5, 4), (3, 4), (4, 3)g

b xRy , jx¡ yj < 3

i jx¡ xj = 0 < 3

) xRx for all x 2 f0, 1, 2, 3, 4, 5g.

) R is reflexive.

ii If xRy ) jx¡ yj < 3

) jy ¡ xj < 3 fas jx¡ yj = jy ¡ xj g
) yRx

) R is symmetric.

iii As 0R2 and 2R4 6) 0R4, R is not transitive.

c R is not an equivalence relation as R is not transitive.

5 a f : R ! R ,

f(x) = 2x3 + 3x¡ 1

f 0(x) = 6x2 + 3

> 0 for all x 2 R

) f(x) is increasing for

all x > R .

i f(x) is an injection as

no horizontal line cuts

the graph more than

once.

ii The range of f is R , so f is a surjection.

b f : Z ! Z +, f(x) = x2

i f is not one-to-one

as, for example, the

horizontal line

y = 1, cuts the

graph twice. Thus f

is not an injection.

ii f is not onto as, for example, 2 2 Z +, but there is no

x 2 Z such that x2 = 2.
) f is not a surjection.

c f : C ! R + [ f0g, f(z) = jzj
i f is not one-to-one as, for example, f(i) = jij = 1 and

f(¡i) = j¡ij = 1
) f is not an injection.

ii For any r 2 R + [ f0g, z = ri has jzj = r
) f is a surjection.

d f : Z + ! R +, f(x) =
p
x

i f is one-to-one as
p
x1 =

p
x2 , x1 = x2 for all

x1, x2 2 Z +

) f is an injection.

ii f is not onto as, for example ¼ 2 R +, but there is no

x 2 Z + such that
p
x = ¼.

) f is not a surjection.

6 a i 3 ¤ 4

= 2

ii 2 ¤ (1 ¤ 3)

= 2 ¤ 3

= 4

iii (2 ¤ 1) ¤ 3

= 3 ¤ 3

= 3

b It is not a Latin square as row 4 contains the element 1 twice.

This indicates that fS, ¤g is not a group.

7 a i gf =

³
1 2 3 4
2 3 1 4

´³
1 2 3 4
1 3 4 2

´
=

³
1 2 3 4
2 1 4 3

´
ii fg =

³
1 2 3 4
1 3 4 2

´³
1 2 3 4
2 3 1 4

´
=

³
1 2 3 4
3 4 1 2

´
iii f¡1 =

³
1 2 3 4
1 4 2 3

´
iv g¡1 =

³
1 2 3 4
3 1 2 4

´
b f2 =

³
1 2 3 4
1 3 4 2

´³
1 2 3 4
1 3 4 2

´
=

³
1 2 3 4
1 4 2 3

´
f3 = f2f =

³
1 2 3 4
1 4 2 3

´³
1 2 3 4
1 3 4 2

´
=

³
1 2 3 4
1 2 3 4

´
As f3 = e, f3k = (f3)k = ek = e, k 2 Z+

) n = 3k, k 2 Z+

8 a n = 3, G = f0, 1, 2g under +3

11 = 1, 12 = 1 +3 1 = 2, 13 = 0

21 = 2, 22 = 2 +3 2 = 1, 23 = 0

) 1 and 2 are its generators.

b n = 5, G = f0, 1, 2, 3, 4g under +5

11 = 1, 12 = 2, 13 = 3, 14 = 4, 15 = 0

21 = 2, 22 = 4, 23 = 1, 24 = 3, 25 = 0

31 = 3, 32 = 1, 33 = 4, 34 = 2, 35 = 0

41 = 4, 42 = 3, 43 = 2, 44 = 1, 45 = 0

) 1, 2, 3, and 4 are all generators.

c n = 6, G = f0, 1, 2, 3, 4, 5g under +6

11 = 1, 12 = 2, 13 = 3, 14 = 4, 15 = 5, 16 = 0

21 = 2, 22 = 4, 23 = 0

31 = 3, 32 = 0

41 = 4, 42 = 2, 43 = 0

51 = 5, 52 = 4, 53 = 3, 54 = 2, 55 = 1, 56 = 0

) 1 and 5 are its generators.

y

x1 2 3 4 5

1

2

3

4

5

y

x

y

x
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160 WORKED SOLUTIONS

9 Notice that:

xRy , pa(x) = y

, x and y belong to the same cycle ci in p.

a (1) xRx since x lies in the same cycle as x.

) R is reflexive.

(2) xRy ) x and y belong to the same cycle

) y and x belong to the same cycle

) yRx

) R is symmetric.

(3) xRy ) x and y belong to the same cycle.

yRz ) y and z belong to the same cycle.

So, if xRy and yRz then x, y, and z belong to the

same cycle.

) xRz
) R is transitive.

Thus, from (1), (2), and (3), R is an equivalence relation.

b The equivalence classes are the ‘orbits’ of the distinct, disjoint

cycles of p.

c p = (1 2)(3 6 8)(4 5)(7) is the product of disjoint cycles.

The equivalence classes are:

f1, 2g, f3, 6, 8g, f4, 5g, and f7g

10 a ¤ 1 2

1 1 2
2 1 2

S = f1, 2g is closed under ¤ as

a¤ b 2 S whenever a, b 2 S, as the

table contains only members of S.

(1 ¤ 1) ¤ 1

= 1 ¤ 1

= 1

and

1 ¤ (1 ¤ 1)

= 1 ¤ 1

= 1 X

(1 ¤ 1) ¤ 2

= 1 ¤ 2

= 2

and

1 ¤ (1 ¤ 2)

= 1 ¤ 2

= 2 X

(1 ¤ 2) ¤ 1

= 2 ¤ 1

= 1

and

1 ¤ (2 ¤ 1)

= 1 ¤ 1

= 1 X

(2 ¤ 1) ¤ 1

= 1 ¤ 1

= 1

and

2 ¤ (1 ¤ 1)

= 2 ¤ 1

= 1 X

(2 ¤ 2) ¤ 1

= 2 ¤ 1

= 1

and

2 ¤ (2 ¤ 1)

= 2 ¤ 1

= 1 X

(2 ¤ 1) ¤ 2

= 1 ¤ 2

= 2

and

2 ¤ (1 ¤ 2)

= 2 ¤ 2

= 2 X

(1 ¤ 2) ¤ 2

= 2 ¤ 2

= 2

and

1 ¤ (2 ¤ 2)

= 1 ¤ 2

= 2 X

(2 ¤ 2) ¤ 2

= 2 ¤ 2

= 2

and

2 ¤ (2 ¤ 2)

= 2 ¤ 2

= 2 X

Thus (a ¤ b) ¤ c = a ¤ (b ¤ c) for all a, b 2 S
) ¤ is associative on S.
Hence, fS, ¤g is a semi-group.

But the Cayley table is not a Latin square.

) fS, ¤g is not a group.

b ¤ 1 2

1 1 2
2 2 1

S = f1, 2g under ¤ is either Z 3 under

£3 or isomorphic to it, and fZ 3, £3g
is a group.

) fS, ¤g is closed and ¤ is associative

) fS, ¤g is a semi-group.

fS, ¤g is a group.

c ¤ 1 2 3

1 1 2 3
2 2 3 1
3 3 1 2

S = f1, 2, 3g under ¤
S is isomorphic to

U3 = f1, ®, ®2g where

® = cis
¡
2¼
3

¢
under £ of

complex numbers.

1 7! 1

2 7! ®

3 7! ®2

£ 1 ® ®2

1 1 ® ®2

® ® ®2 1

®2 ®2 1 ®

Now S is closed and ¤ is associative on S, as £ is associative

on U3.

) fS, ¤g is a semi-group.

In fact fS, ¤g is a group as fU3, £g is a group.

d S = f1, 2, 3g under ¤
S is clearly closed as the Cayley

table contains only elements of S.

¤ 1 2 3

1 1 2 3

2 3 2 3

3 3 2 3

On checking all 3£3£3 = 27 possibilities ¤ is associative

on S.

) fS, ¤g is a semi-group.

However, the Cayley table is not a Latin square.

) fS, ¤g cannot be a group.

11 fG, ¤g is a group with identity e.

fG0, ±g is a group with identity e0.
(a, a0)(b, b0) = (a ¤ b, a0 ± b0)

a Closure: If (a, a0) 2 S and (b, b0) 2 S

a 2 G, a0 2 G0 and b 2 G, b0 2 G0

) a, b 2 G and a0, b0 2 G0

) a ¤ b 2 G and a0 ± b0 2 G0

) (a ¤ b, a0 ± b0) 2 S

) S is closed.

Associative: ¤ is associative on G
± is associative on G0
) ‘product’ is associative on S = G£G0.

Identity: The identity is (e, e0).
Inverse: (a¡1, (a0)¡1) is the inverse of (a, a0).

b S1 = f(g, e0) j g 2 Gg
Let (g1, e0) and (g2, e0) be in S

) (g2, e0)¡1 = (g ¡1
2 , e0) 2 S f(e0)¡1 = e0g

and (g1, e0)(g ¡1
2 , e0) = (g1g

¡1
2 , e0)

Now g1g
¡1
2 2 G fas G < Gg

) (g1g
¡1
2 , e0) 2 S1

) S1 < S

12 If jGj = 1, 2, 3, or 5, then jGj = 1 or a prime

) G is cyclic

) G is Abelian

If jGj = 4, then G is either cyclic or isomorphic to the

Klein 4-group and therefore is Abelian.

Hence, a non-Abelian group must have order 6 or more.

) jGj > 6

13 (a, b) ¤ (c, d) = (a+ c, 2cb+ d), x 2 Z , y 2 Q

a Closure: For all (a, b), (c, d) 2 G,

a, c 2 Z and c, d 2 Q

) a+ c 2 Z and 2cb+ d 2 Q

) (a, b) ¤ (c, d) 2 G

) G is closed under ¤.
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WORKED SOLUTIONS 161

Associative: [(a, b) ¤ (c, d)] ¤ (e, f)

= (a+ c, 2cb+ d) ¤ (e, f)

= (a+ c+ e, 2e(2cb+ d) + f)

= (a+ c+ e, 2e+cb+ 2ed+ f)

and (a, b) ¤ [(c, d) ¤ (e, f)]

= (a, b) ¤ (c+ e, 2ed+ f)

= (a+ c+ e, 2c+eb+ 2ed+ f)

= (a+ c+ e, 2e+cb+ 2ed+ f)

= [(a, b) ¤ (c, d)] ¤ (e, f)

) ¤ is associative on G.
Identity: Suppose (a, b) ¤ (x, y) = (a, b)

) (a+ x, 2xb+ y) = (a, b)

) a+ x = a and 2xb+ y = b

) x = 0 and b+ y = b

) x = 0, y = 0

Check: (0, 0) ¤ (a, b)

= (0 + a, 2a(0) + b)

= (a, b) X

) (a, b) ¤ (0, 0) = (a, b) and

(0, 0) ¤ (a, b) = (a, b) for all (a, b) 2 G

Inverse: Suppose (a, b) ¤ (x, y) = (0, 0)

) (a+ x, 2xb+ y) = (0, 0)

) a+ x = 0 and 2xb+ y = 0

) x = ¡a and y = ¡2¡ab

) y = ¡ b

2a

Each element has an inverse

³
¡a, ¡ b

2a

´
f2a > 0 for all a 2 Z , ) 2a 6= 0g
Check:

³
¡a, ¡ b

2a

´
¤ (a, b)

= (¡a+ a, 2a
³
¡ b

2a

´
+ b)

= (0, ¡b+ b)

= (0, 0) X

) fG, ¤g is a group.

b fG, ¤g is not Abelian, as for example,

(2, 3) ¤ (1, 0)

= (2 + 1, 21(3) + 0)

= (3, 6)

and (1, 0) ¤ (2, 3)

= (1 + 2, 22(0) + 3)

= (3, 3)

) (2, 3) ¤ (1, 0) 6= (1, 0) ¤ (2, 3)

c i H1 = f(a, 0) j a 2 Z g is non-empty and

(b, 0)¡1 =

³
¡b, ¡ 0

2b

´
= (¡b, 0)

Thus (a, 0) ¤ (¡b, 0) = (a¡ b, 2¡b(0) + 0)

= (a¡ b, 0) 2 H1

) by the subgroup test, H1 < G.

ii H2 = f(0, b) j b 2 Q g is non-empty and

(0, a)¡1 =

³
¡0, ¡ a

20

´
= (0, ¡a)

Thus (0, b) ¤ (0, a)¡1 = (0, b) ¤ (0, ¡a)

= (0 + 0, 20b¡ a)

= (0, b¡ a)

2 H2

) by the subgroup test, H2 < G.

14 G1 : fR n f1g, ¤ g, a ¤ b = a+ b¡ ab

G2 : fR +, £ g
f : G1 ! G2 under f(a) = ja¡ 1j .

a For a, b 2 R n f1g,

f(a ¤ b) = f(a+ b¡ ab)

= ja+ b¡ ab¡ 1j
= jab¡ a¡ b+ 1j f j¡xj = jxj g
= j(a¡ 1)(b¡ 1)j
= ja¡ 1j jb¡ 1j
= f(a)£ f(b)

) f is a homomorphism.

b i Graph of

f(x) = jx¡ 1j

f is not one-to-one as the horizontal line through (0, 1)

meets the graph more than once.

) f is not an injection.

ii The range of f(x) is R +.

ff(a) 6= 0 since a 6= 1g
) f is onto and so f is a surjection.

iii As f is not one-to-one, it is not a bijection.

) f is not an isomorphism.

15 a Suppose p = (1 2 3), q = (1 4) for example.

In this case pq = (1 2 3)(1 4) = (1 4 2 3)

and qp = (1 4)(1 2 3) = (1 2 3 4)

Hence pq 6= qp

b f(pq) = (pq)2 = (pq)(pq) = pqpq

and f(p)f(q) = p2q2 = ppqq

) f(pq) = f(p)f(q)

, pqpq = ppqq

, p¡1pqpqq¡1 = p¡1ppqqq¡1 fmultiply on left by p¡1

and on right by q¡1g
, pq = qp

However, from a, pq 6= qp for all p, q 2 S4

) f(pq) 6= f(p)f(q) for all p, q 2 S4

) f is not a homomorphism.

REVIEW SET B

1 A = f0, 3, 6, 9, 12g, B = f1, 2, 3, 4, 5, 6g
C = f2, 4, 6, 8, 10g
U = f0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13g

y

x1

A B

U
C

1

2

3

4

5
6

7

8

0

9
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13
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162 WORKED SOLUTIONS

a A \ (B [ C)

= f0, 3, 6, 9, 12g \ f1, 2, 3, 4, 5, 6, 8, 10g
= f3, 6g

b A¢(BnC) = f0, 3, 6, 9, 12g¢ f1, 3, 5g
= f0, 6, 9, 12g [ f1, 5g
= f0, 1, 5, 6, 9, 12g

c B0 [ C0 = (B \ C)0 fDe Morgan’s lawg
= f2, 4, 6g0
= f0, 1, 3, 5, 7, 8, 9, 10, 11, 12, 13g

d A [ (B¢C)

= f0, 3, 6, 9, 12g [ ((BnC) [ (CnB))

= f0, 3, 6, 9, 12g [ (f1, 3, 5g [ f8, 10g)
= f0, 3, 6, 9, 12g [ f1, 3, 5, 8, 10g
= f0, 1, 3, 5, 6, 8, 9, 10, 12g

e A0 \ (B0¢C0)
= A0 \ (B¢C) fExercise A.5, question 7g
= f1, 2, 4, 5, 7, 8, 10, 11, 13g \ f 1, 3, 5, 8, 10| {z } g

from d
= f1, 5, 8, 10g

2 If x 2 (A \B)0 then x =2 A \B

) x =2 A or x =2 B

) x 2 A0 or x 2 B0

) x 2 A0 [B0

Thus (A \B)0 µ A0 [B0 .... (1)

If x 2 A0 [B0 then x 2 A0 or x 2 B0

) x =2 A or x =2 B

) x =2 A \B

) x 2 (A \B)0

Thus A0 [B0 µ (A \B)0 .... (2)

From (1) and (2), (A \B)0 = A0 [B0

3 a xRy , x¡ y is divisible by 6

, x¡ y = 6n for some n 2 Z

(1) As x¡ x = 0 = 6£ 0, 0 2 Z then xRx
) R is reflexive.

(2) If xRy then x¡ y = 6n for some n 2 Z

) y ¡ x = 6(¡n), ¡n 2 Z

) yRx

) R is symmetric.

(3) If xRy and yRz then x¡y = 6n and y¡z = 6m,

n, m 2 Z
) x¡ y + y ¡ z = 6n+ 6m

) x¡ z = 6(n+m) where n+m 2 Z
) xRz
) R is transitive.

From (1), (2), and (3), R is an equivalence relation on Z .

b Each integer belongs to exactly one equivalence class

containing all integers which have the same remainder on

division by 6. These equivalence classes are [0], [1], [2], [3],

[4], and [5]. For example, [3] represents all integers of the

form 6n+ 3. 27 is in this class as 27 = 6(4) + 3.

4 a (a, b)R(x, y) , jxj+ jyj = jaj+ jbj on R £ R .

(1) jxj+ jyj = jxj+ jyj
) (x, y)R(x, y) for all (x, y) 2 R £ R .

) R is reflexive.

(2) If (a, b)R(x, y) ) jxj+ jyj = jaj+ jbj
) jaj+ jbj = jxj+ jyj
) (x, y)R(a, b)

) R is symmetric.

(3) If (a, b)R(c, d) and (c, d)R(e, f) then

jcj+ jdj = jaj+ jbj and jej+ jf j = jcj+ jdj
) jej+ jf j = jaj+ jbj
) (a, b)R(e, f)
) R is transitive.

From (1), (2), and (3), R is an equivalence relation on R £R .

b Each point (a, b) is an

element of an equivalence

class containing all points

lying on a square with

equation jxj + jyj = c,

say, where c = jaj+ jbj.

Note: When a = b = 0, c = 0 and f(0, 0)g is an

equivalence class, which has only one element.

5 a R ! R and f(x) = x3 + 5
Any horizontal line cuts

the function at most once
) f is one-to-one.

The range of f is R
) f is onto.

) f(x) = x3 + 5 is a

bijection.

A B

U
C

A B

U
C

A B

U
C

A B

U
C

A B

U
C

y

x

c

c-c

-c

y

x

y = f(x)5
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WORKED SOLUTIONS 163

) f¡1 exists and x = y3 + 5

) y3 = x¡ 5

) y = 3
p
x¡ 5

) f¡1(x) = 3
p
x¡ 5

b R + ! R and f(x) = lnx
Any horizontal line cuts

the curve at most once.

ff 0(x) =
1

x
> 0 for all

x 2 R +g
) f(x) is increasing for

all x 2 R +.

Thus f is one-to-one and

its range is R ) f is onto.

) f(x) = lnx is a bijection.

) f¡1 exists and x = ln y

) y = ex

) f¡1(x) = ex

c f : Z ! Z , f(x) = 2x

Range of f = feven integersg
6= Z

) f is not onto.

) f is not a bijection.

d f : R ! R , f(x) = 2x
f is one-to-one

fno horizontal line cuts

the graph more than onceg
and range of f = R
) f is onto.

Hence, f is a bijection with inverse x = 2y

) y = f¡1(x) =
x

2

e f : R ! [¡1, 1], f(x) = sinx is not a bijection as, for

example, the horizontal line y = 0 cuts the graph more than

once.

6 a a ¤ b = ab+ 2
i Not associative, as for example,

(1 ¤ 1) ¤ 2

= (1 + 2) ¤ 2

= 3 ¤ 2

= 6 + 2 = 8

and 1 ¤ (1 ¤ 2)

= 1 ¤ (2 + 2)

= 1 ¤ 4

= 4 + 2 = 6
and 8 6= 6

ii b ¤ a = ba+ 2 = ab+ 2 = a ¤ b
fas R under £ is commutativeg
) a ¤ b = b ¤ a for all a, b 2 R
) ¤ is commutative on R .

iii Suppose a ¤ x = x ¤ a = a for all a 2 R

) ax+ 2 = xa+ 2 = a

) x =
a¡ 2

a
which is not unique for a 2 R

) no identity exists.

iv If there is no identity there cannot be inverses.

b a ¤ b = ja+ bj
i Not associative, as for example,

(¡1 ¤ ¡1) ¤ 2

= j¡2j ¤ 2

= 2 ¤ 2

= j4j = 4

and ¡1 ¤ (¡1 ¤ 2)

= ¡1 ¤ j1j
= ¡1 ¤ 1

= j0j = 0

and 4 6= 0

ii b ¤ a = jb+ aj = ja+ bj = a ¤ b for all a, b 2 R
) ¤ is commutative on R .

iii Suppose a ¤ x = a for all a 2 R

) ja+ xj = a for all a 2 R

) a+ x = §a for all a 2 R

) x = 0 or ¡2a for all a 2 R
As x is not unique, no identity exists.

iv As no identity exists, no inverses exist.

c a ¤ b = jabj
i (a ¤ b) ¤ c

= jabj ¤ c

= jjabj cj
= jabj jcj
= jabcj

and a ¤ (b ¤ c)

= a ¤ jbcj
= ja jbcjj
= jaj jbcj
= jabcj

fusing laws of modulusg
) (a ¤ b) ¤ c = a ¤ (b ¤ c) for all a, b, c 2 R
) ¤ is associative on R .

ii b ¤ a = jbaj = jabj = a ¤ b for all a, b 2 R
) ¤ is commutative on R .

iii Suppose a ¤ x = a for all a 2 R

) jaxj = a for all a 2 R

) ax = §a

) x = §1

As x is not unique, no identity exists.

iv As no identity exists, no inverses can exist.

7 a p =

³
1 2 3 4
3 1 2 4

´
= (1 3 2)

) p has order 3 fTheorem 12g

b q =

³
1 2 3 4
1 2 4 3

´
= (3 4)

) q has order 2 fTheorem 12g

c r =

³
1 2 3 4
2 1 4 3

´
= (1 2)(3 4)

8 S = fI, A, B, C, Dg
Closure: S is closed under ¤ as the table contains only the

elements of S.

Associative: A ¤ (B ¤ C) = A ¤D = C

whereas (A ¤B) ¤ C = D ¤ C = A

) ¤ is not associative on S.

y

x

y = f(x)

1

y

x

(2 4),

(1 2),

(-1 -2),

(-2 -4),

y

x

y = 2x

y

x

y = xsin

) order of r = LCM (2, 2) = 2 fTheorem 13g
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164 WORKED SOLUTIONS

Identity: The identity is I as X ¤ I = I ¤X = X for all

X 2 S.

Inverse: As A2 = B2 = C2 = D2 = I, each element

is its own inverse.

That is, A¡1 = A, B¡1 = B, C¡1 = C,

D¡1 = D, and I¡1 = I.

Thus only associativity fails.

9 a S = f1, 3, 5, 9, 11, 13g under £14 has Cayley table:

£14 1 3 5 9 11 13

1 1 3 5 9 11 13
3 3 9 1 13 5 11
5 5 1 11 3 13 9
9 9 13 3 11 1 5
11 11 5 13 1 9 3
13 13 11 9 5 3 1

Closure: As the Cayley table contains only elements

in S, S is closed under £14.

Associative: £14 is associative since £ is associative.

Identity: 1 is the identity as a£14 1 = 1£14 a = a

for all a 2 S.

Inverse: From the table,

1¡1 = 1, 3¡1 = 5, 5¡1 = 3, 9¡1 = 11,

11¡1 = 9, 13¡1 = 13

Each element has a unique inverse.

Thus fS, £14g is a group.

b 11 = 1 32 = 9

33 = 13

34 = 11

35 = 5

36 = 1

52 = 11

53 = 13

54 = 9

55 = 3

56 = 1

92 = 11

93 = 1

112 = 9

113 = 1

132 = 1

) 1 has order 1, 13 has order 2, 9 and 11 have order 3,

3 and 5 have order 6.

c As 3 and 5 have order 6, the group is cyclic, and the

generators are 3 and 5.

10 a 2 G, a 6= e, has order 2 ) a2 = e

) a¡1 = a

Let a, b 2 G be two non-identity elements, and b 6= a

) a2 = e and b2 = e.

Now a ¤ b 2 G ffG, ¤ g is a group ) closureg
and a ¤ b 6= e, so a ¤ b has order 2.

) (a ¤ b)2 = e

) (a ¤ b) ¤ (a ¤ b) = e

) a ¤ b ¤ a ¤ b = e fassociativityg
) a¡1 ¤ (a ¤ b ¤ a ¤ b) ¤ b¡1 = a¡1 ¤ e ¤ b¡1

) a¡1 ¤ a| {z } ¤ b ¤ a ¤ b ¤ b¡1| {z } = a¡1 ¤ b¡1

) e ¤ b ¤ a ¤ e = a ¤ b fa¡1 = a, b¡1 = bg
) b ¤ a = a ¤ b

) G is Abelian.

11 fA, +mg is a group, A = f0, 1, 2, ...., (m¡ 1)g
fB, +m2g is a group, B = f0, 1, 2, ...., (m2 ¡ 1)g
(a, b) ¤ (x, y) = (a+ x (modm), b+ y +mxb (modm2))

Closure: For all (a, b), (c, d) 2 G

(a, b) ¤ (c, d)

= (a+ c (modm), b+ d+mcb (modm2))

Now a+ c (modm) 2 A

and b+ d+mcb (modm2) 2 B

) (a, b) ¤ (c, d) 2 G

) ¤ is closed on G.

fWe will now write (p (modm), q (modm2)) as (p, q).g
Associative: [(a, b) ¤ (x, y)] ¤ (c, d)

= (a+ x, b+ y +mxb) ¤ (c, d)

= (a+ x+ c,

b+ y +mxb+ d+mc(b+ y +mxb))

= (a+ x+ c,

b+ y +mxb+ d+mcb+mcy +m2bcx)

f ´ 0g
= (a+ x+ c, b+ y + d+m[bx+ bc+ cy])

and

(a, b) ¤ [(x, y) ¤ (c, d)]

= (a, b) ¤ (x+ c, y + d+mcy)

= (a+ x+ c, b+ y + d+mcy +m(x+ c)b)

= (a+ x+ c, b+ y + d+mcy +mxb+mbc)

= (a+ x+ c, b+ y + d+m[bx+ bc+ cy])

= [(a, b) ¤ (x, y)] ¤ (c, d)

) ¤ is associative on G.

Identity: Suppose (a, b) ¤ (x, y) = (a, b)

) (a+ x, b+ y +mxb) = (a, b)

) a+ x (modm) = a

) x = 0 fx 2 Ag
and b+ y +m(0)b (modm2) = b

) y = 0 fy 2 Bg
Check: (0, 0) ¤ (a, b) = (0 + a, 0 + b+ma(0))

= (a, b)

Thus (a, b) ¤ (0, 0) = (0, 0) ¤ (a, b) = (a, b)

for all (a, b) 2 G. Hence (0, 0) is the identity.

Inverse: Suppose (a, b) ¤ (x, y) = (0, 0)

) (a+ x, b+ y +mxb) = (0, 0)

) a+ x (modm) = 0

) x = m¡ a fx 2 Ag
and b+ y +m(m¡ a)b (modm2) = 0

) b+ y ¡mab (modm2) = 0

) y = b(ma¡ 1) (modm2)

) (a, b)¡1 = (m¡ a, b(ma¡ 1))

Check: (m¡ a, b(ma¡ 1)) ¤ (a, b)

= (m¡ a+ a,

b(ma¡ 1) + b+mab(ma¡ 1))

= (m, abm¡ b+ b+m2a2b¡ abm)

= (m, m2a2b)

= (0, 0)

) G is a group under ¤ fthe 4 axioms are satisfiedg
Consider elements (0, 2) and (1, 0), where m = 5:

(0, 2) ¤ (1, 0) = (0 + 1, 2 + 0 + 5(1)(2))

= (1, 12)
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WORKED SOLUTIONS 165

and (1, 0) ¤ (0, 2) = (1 + 0, 0 + 2 + 5(0)(0))

= (1, 2)

) ¤ is not Abelian.

The order of G = order of A£ order of B

= m£m2 = m3

12 jGj = p, an odd prime

Suppose a 2 G, then jaj is a factor of jGj = p

fLagrange’s theorem, Corollary 1g
) jaj = 1 or p .... (1)

Now if a is its own inverse, a = a¡1

) aa = aa¡1

) a2 = e

) a = e or jaj = 2

But jaj 6= 2 ffrom (1)g
) a = e

) e is the unique element of G which is its own inverse.

13 fH1, ¤g and fH2, ¤g are subgroups of fG, ¤g, where fG, ¤g
is a group.

Let a 2 H1 [H2 and b 2 H1 [H2

) a 2 H1 or H2 and b 2 H1 or H2

Suppose a 2 H1 and b 2 H2

) b¡1 2 H2

Since b¡1 is not necessarily 2 H1, we cannot say that

a ¤ b¡1 2 H1.

Likewise, since a is not necessarily 2 H2, we cannot say that

a ¤ b¡1 2 H2.

) a, b 2 H1 [H2 ; a ¤ b¡1 2 H1 [H2.

) fH1 [H2, ¤g is not a subgroup of fG, ¤g.

For example, ff0, 6g, +12g and ff0, 4, 8g, +12g are

subgroups of fZ 12, +12g, but ff0, 4, 6, 8g, +12g is not

a subgroup as it is not closed.

14 f : fR +, £g ! fR +, £g and f(x) = x2

g : fR +, £g ! fR , +g and g(x) = lnx

a i (f ± g)(x) = f(g(x))

= f(lnx)

= (lnx)2

ii (g ± f)(x) = g(f(x))

= g(x2)

= ln(x2)

b The domain of f is R + and the domain of g is R +.

) (f ± g)(x) = (lnx)2 can only be defined for x 2 R +

such that g(x) 2 R +, the domain of f and for lnx > 0,

x > 1
) x 2 ] 1, 1 [

) f ± g has domain ] 1, 1 [ .

Thus f ± g is not an isomorphism from fR +, £g onto

fR +, £g.

c g ± f is an isomorphism.

15 a f(a+ b) = 3a+b

= 3a £ 3b

= f(a)£ f(b)

) f is a homomorphism.

i Ker(f) = fx j f(x) = 1g
= fx j 3x = 1g
= f0g

) since the kernel contains only the identity in fR , +g,

f is one-to-one.

R(f) = ff(x) j x 2 fR , + gg
= f3x j x 2 R g
= R +

) f is onto.

ii Since f is one-to-one and onto and a homomorphism,

f is an isomorphism.

b G is a finite group of order 4.

G = fe, p, p2, p3g
= fe, (1 4 3 2), (1 3)(2 4), (1 2 3 4)g

f(pmpn) = f(pm+n)

= im+n

= im £ in

= f(pm)£ f(pn)

) f is a homomorphism.

i Ker(f) = fpm j f(pm) = im = 1,

the identity in fC n f0g, £ gg
= fp0 = eg

) the kernel contains only the identity in G.

) f is one-to-one.

R(f) = ff(e), f(p), f(p2), f(p3)g = fi0, i, i2, i3g
= f1, i, ¡1, ¡ig

R(f) 6= C n f0g
) f is not onto.

ii Since f is one-to-one but not onto, f is not an

isomorphism. Note that we could deduce this directly

from the fact that G is finite but fC n f0g, £g is an

infinite group.

REVIEW SET C

1 P (A) = f?, f1g, f2g, f1, 2gg
a Under \ \ ? f1g f2g f1, 2g

? ? ? ? ?
f1g ? f1g ? f1g
f2g ? ? f2g f2g

f1, 2g ? f1g f2g f1, 2g

Although f1, 2g is the identity e, not all elements of P (A)

have an inverse.

For example, f2g \ a 6= f1, 2g for any a 2 P (A).

) P (A) cannot be a group under \.

b Under [ [ ? f1g f2g f1, 2g
? ? f1g f2g f1, 2g
f1g f1g f1g f1, 2g f1, 2g
f2g f2g f1, 2g f2g f1, 2g

f1, 2g f1, 2g f1, 2g f1, 2g f1, 2g

? is the identity under [.

However, not all elements of P (A) have an inverse.

For example, f2g [ a 6= ? for any a 2 P (A), hence

f2g has no inverse.

) P (A) cannot be a group under [.

y

x

y = 3x
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166 WORKED SOLUTIONS

2 To prove: (AnB)£C = (A£C) n (B £C)

Proof: () ) Let (x, y) 2 (AnB)£ C

then x 2 AnB and y 2 C

) x 2 A and x =2 B and y 2 C

) x 2 A and y 2 C, but (x, y) =2 B £C

) (x, y) 2 (A£C) n (B £C)

) (AnB)£C µ (A£ C)n (B £C) .... (1)

(( ) Let (x, y) 2 (A£C) n (B £C)

) (x, y) 2 A£C, but (x, y) =2 B £C

) x 2 A and y 2 C, but x =2 B

) x 2 AnB and y 2 C

) (x, y) 2 (AnB)£ C

) (A£ C)n (B £ C) µ (AnB)£ C .... (2)

From (1) and (2), (AnB)£C = (A£C) n (B £C).

3 (a, b)R(x, y) , bx2 = a2y for (a, b), (x, y) 2 R n f0g £ R .

a (1) (x, y)R(x, y) is true as yx2 = x2y

f£ is commutative on R g
) R is reflexive.

(2) If (a, b)R(x, y)

) bx2 = a2y

) ya2 = x2b f £ is commutative on R g
) (x, y)R(a, b)

) R is symmetric.

(3) If (a, b)R(c, d) and (c, d)R(e, f)

) bc2 = a2d and de2 = c2f

) c2

d
=

a2

b
=

e2

f| {z }
) be2 = a2f

) (a, b)R(e, f)
) R is transitive.

From (1), (2), and (3), R is an equivalence relation on

R n f0g £ R .

b y =

³
b

a2

´
x2 where a 6= 0, b 6= 0

) points lie on the parabola y = kx2 with (0, 0) removed

and k > 0.
So, each point (a, b) belongs to one of these parabolas.

4 This is not correct. The argument assumes that xRy for some

y 2 S. x may not be related to any other element in the set.

5 a f1(x) = x, f2(x) = ¡x, f3(x) =
1

x
, f4(x) = ¡ 1

x

(f1 ± f1)(x)

= f1(f1(x))

= f1(x)

(f1 ± f2)(x)

= f1(f2(x))

= f2(x)

(f1 ± f3)(x)

= f1(f3(x))

= f3(x)

(f1 ± f4)(x)

= f1(f4(x))

= f4(x)

(f2 ± f1)(x)

= f2(f1(x))

= f2(x)

(f2 ± f2)(x)

= f2(f2(x))

= f2(¡x)

= ¡(¡x)

= x = f1(x)

(f2 ± f3)(x)

= f2(f3(x))

= f2

³
1

x

´
= ¡ 1

x
= f4(x)

(f2 ± f4)(x)

= f2(f4(x))

= f2

³
¡ 1

x

´
= ¡

³
¡ 1

x

´
=

1

x
= f3(x)

(f3 ± f1)(x)

= f3(f1(x))

= f3(x)

(f3 ± f2)(x)

= f3(f2(x))

= f3(¡x)

=
1

¡x
= f4(x)

(f3 ± f3)(x)

= f3(f3(x))

= f3

³
1

x

´
=

1

1
x

= x = f1(x)

(f3 ± f4)(x)

= f3(f4(x))

= f3

³
¡ 1

x

´
=

1

¡ 1
x

= ¡x = f2(x)

(f4 ± f1)(x)

= f4(f1(x))

= f4(x)

(f4 ± f2)(x)

= f4(f2(x))

= f4(¡x)

=
¡1

¡x

=
1

x
= f3(x)

(f4 ± f3)(x)

= f4(f3(x))

= f4

³
1

x

´
=

¡1

1
x

= ¡x

= f2(x)

(f4 ± f4)(x)

= f4(f4(x))

= f4

³
¡ 1

x

´
=

¡1

¡ 1
x

= x

= f1(x)

) the Cayley table is:

± f1 f2 f3 f4

f1 f1 f2 f3 f4
f2 f2 f1 f4 f3
f3 f3 f4 f1 f2
f4 f4 f3 f2 f1

Closure: In the table every entry is either f1, f2, f3,

or f4. ) G is closed under ±.

Associative: Since function composition is associative, ± is

associative in G.

Identity: f1 is the identity as

f1 ± fi = fi ± f1 = fi (i = 1, 2, 3, 4).

Inverse: As fi ± fi = f1 for i = 1, 2, 3, 4

f ¡1
i

= fi
) each element is its own inverse.

Thus fG, ±g is a group.

b jf1j = 1 and jf2j = jf3j = jf4j = 2

c G is not cyclic as no element has order 4 (the order of G).

d The Klein 4-group has Cayley table:

¤ i p q r

i i p q r

p p i r q

q q r i p

r r q p i

f1 7! i

f2 7! p

f3 7! q

f4 7! r

) G ! Klein 4 is one-to-one, onto, and a homomorphism

since the tables have the same structure.
) G »= Klein 4

y

x
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WORKED SOLUTIONS 167

6 a a ± b =
1

ab
on S = R n f0g

i (1 ± 2) ± 3 = 1
2
± 3 =

1

11
2

= 2
3

and 1 ± (2 ± 3) = 1 ± 1
6
=

1

1
6

= 6

) in general (a ± b) ± c 6= a ± (b ± c)
) ± is not associative.

ii b ± a =
1

ba
=

1

ab
= a ± b for all a, b 2 S

) ± is commutative on S.

iii Suppose a ± x = x ± a = a for some x 2 S

) 1

ax
=

1

xa
= a

) x =
1

a2
which is not unique.

) no identity exists.

iv As no identity exists, inverses cannot be found.

b a ± b = (a+ 2)(b+ 3)

i (1 ± 0) ± 1 = (3£ 3) ± 1

= 9 ± 1

= 11£ 4

= 44

1 ± (0 ± 1) = 1 ± (2£ 4)

= 1 ± 8

= 3£ 11

= 33

) in general (a ± b) ± c 6= a ± (b ± c) for all

a, b, c 2 R .

) ± is not associative on R .

ii 1 ± 0 = 3£ 3 = 9 and

0 ± 1 = 2£ 4 = 8

) in general a ± b 6= b ± a for all a, b 2 R
) ± does not commute in R .

iii Suppose a ± x = a for all a 2 R

) (a+ 2)(x+ 3) = a

) x = ¡3 +
a

a+ 2
) x is not unique.

) no identity exists in R .

iv As no identity exists, inverses cannot be found.

c a ± b = a+ b+ 3ab

i (a ± b) ± c

= (a+ b+ 3ab) ± c

= a+ b+ 3ab+ c+ 3(a+ b+ 3ab)c

= a+ b+ c+ 3ab+ 3ac+ 3bc+ 9abc

and a ± (b ± c)

= a ± (b+ c+ 3bc)

= a+ b+ c+ 3bc+ 3a(b+ c+ 3bc)

= a+ b+ c+ 3bc+ 3ab+ 3ac+ 9abc

= (a ± b) ± c for all a, b, c 2 R

) ± is associative on R .

ii b ± a

= b+ a+ 3ba

= a+ b+ 3ab f £ and + are commutative on Sg
= a ± b

) a ± b = b ± a for all a, b 2 R
) ± is commutative on R .

iii If a ± e = e ± a = a for all a 2 R
a+ e+ 3ae = e+ a+ 3ea = a

) e+ 3ae = 0

) e(1 + 3a) = 0 for all a 2 R

) e = 0

Check: a ± 0 = a+ 0 + 3a(0) = a X

0 ± a = 0 + a+ 3(0)a = a X

Thus the identity is 0.

iv If a ± x = x ± a = 0 for all a 2 R
then a+ x+ 3ax = x+ a+ 3xa = 0

) x(1 + 3a) = ¡a

) x = ¡ a

3a+ 1
, a 6= ¡ 1

3

) ¡ a

3a+ 1
is the inverse of a for all a 2 R n f¡ 1

3
g.

7 a

³
1 2 3
1 2 3

´
= (1)(2)(3),

³
1 2 3
1 3 2

´
= (2 3)³

1 2 3
2 1 3

´
= (1 2),

³
1 2 3
2 3 1

´
= (1 2 3)³

1 2 3
3 1 2

´
= (1 3 2),

³
1 2 3
3 2 1

´
= (1 3)

b i If p = (2 3)

then p¡1 = (3 2)

= (2 3)

ii If p = (1 3 2)

then p¡1 = (2 3 1)

= (1 2 3)

c (1)(2)(3) = e has order 1

Using Theorem 12: (1 2) has order 2

(1 3) has order 2

(2 3) has order 2

(1 2 3) has order 3

(1 3 2) has order 3

8 a £16 1 7 9 15

1 1 7 9 15
7 7 1 15 9
9 9 15 1 7
15 15 9 7 1

Closure: S is closed under £16 as every element in the

table is in S.
Associative: £16 is associative as £ in R is associative.
Identity: The identity is 1 as a£16 1 = 1£16 a = a

for all a 2 S.

Inverse: As 72 = 1, 92 = 1, 152 = 1, and 12 = 1

1¡1 = 1, 7¡1 = 7, 9¡1 = 9, and

15¡1 = 15.

Thus fS, £16g is a group.

b 1 has order 1; 7, 9, and 15 have order 2

c The group is not cyclic as jSj = 4 and no element of S has

order 4.

9 (a, b) ¤ (c, d) = (ac, bc+ d)

a [(a, b) ¤ (c, d)] ¤ (e, f)

= (ac, bc+ d) ¤ (e, f)

= (ace, (bc+ d)e+ f)

= (ace, bce+ de+ f)

Also (a, b) ¤ [(c, d) ¤ (e, f)]

= (a, b) ¤ (ce, de+ f)

= (ace, bce+ de+ f)

= [(a, b) ¤ (c, d)] ¤ (e, f)

) ¤ is associative on S.
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168 WORKED SOLUTIONS

b ¤ is not commutative.
For example,

(0, 1) ¤ (2, 1)

= (0, 2 + 1)

= (0, 3)

and (2, 1) ¤ (0, 1)

= (0, 0 + 1)

= (0, 1)

6= (0, 3)

c Consider (a, b) ¤ (x, y) = (a, b) for all (a, b) 2 R £ R .

) (ax, bx+ y) = (a, b)

) ax = a and bx+ y = b

) x = 1 and b+ y = b

) y = 0

Also (1, 0) ¤ (a, b) = (1£ a, 0(a) + b)

= (a, b)

) (1, 0) is the identity.

d Suppose (a, b) ¤ (p, q) = (1, 0), the identity

) (ap, bp+ q) = (1, 0)

) ap = 1 and bp+ q = 0

) p =
1

a
and q = ¡b

³
1

a

´
, a 6= 0

Thus (0, b) has no inverse.

e fS, ¤g is not a group since not every element has an inverse.

10 fG, ¤g is a finite group of order n, with identity e.

Suppose a 2 G,

) jaj j jGj fLagrange’s theorem Corollaryg
) jaj j n
) n = jaj s for some s 2 Z +

) an = ajajs

) an =
¡
ajaj
¢s

) an = es

) an = e

11 fG, ¤g is a finite group of order n, identity e.

H is a non-empty subset of G and a ¤ b 2 H for all a, b 2 H.

To prove: fH, ¤g is a group.

Closure: As a¤b 2 H for all a, b 2 H then H is closed

under ¤.

Associative: fG, ¤g is a group and ¤ is associative in G.

As H µ G, ¤ is associative in H also.

Identity: From question 10, as G has order n, an = e for

all a 2 G.

Now for a 2 H, an 2 H fclosure in Hg
) the identity e 2 H.

Inverse: If a 2 H, a has a finite order since a 2 G and

G is a finite group.

If jaj = m then am = e, m 2 Z +

So, if a 6= e, a¡1 = am¡1 fm¡ 1 2 Z+g
and am¡1 2 H. fclosureg
Thus, each element in H has in inverse in H.

Hence fH, ¤g is a group (and therefore a subgroup of fG, ¤g).

12 S = f1, ¡1g µ G = f1, ¡1, i, ¡ig
£ 1 ¡1

1 1 ¡1
¡1 ¡1 1

S is a non-empty subset of the finite

set G and fS, ¤g is closed.

) by the subgroup test for finite groups, S < G.

T = fi, ¡1g does not contain the identity 1 2 G, which is

unique in G.

) as T has no identity fT , £g cannot be a group.

) T ¥ G

13 Let G = hgi = fe, g, g2, g3, ...., gm¡1g where m 2 Z+.

e = g0 = gm So, G is a cyclic group of order m.

fZm, +mg = ff0, 1, 2, 3, ...., m¡ 1g, +mg
Consider f : fG, ¤g ! fZm, +mg
where gi 7! i for i = 0, 1, 2, 3, ...., m¡ 1.

Now f is one-to-one and onto and

) f is an isomorphism.

) fG, ¤g »= fZm, +mg

14 f : fG, ¤g ! fH, ±g where G and H are finite.

To prove: f is an isomorphism , Ker(f) = feGg
Proof: f is an isomorphism

, f is one-to-one and onto

, f is one-to-one

fas the groups are finite,

f is one-to-one , f is ontog
, Ker(f) = feGg fTheorem 22g

15 a G is the only left coset of G which is a subgroup of S5.

G = fe, p, p2, p3, p4g
= fe, (1 5 3 4 2), (1 3 2 5 4), (1 4 5 2 3), (1 2 4 3 5)g

b G has
5!

5
= 4! = 24 distinct left cosets in S5.

c q = (1 3 2)

) q¡1 = (2 3 1)

r = (1 4 5)

) q¡1r = (2 3 1)(1 4 5) = (1 4 5 2 3)

d Using a, q¡1r 2 G

) qG = rG

) qG, rG are not disjoint, they are equal.

16 a Ker(f) = fa 2 G j f(a) = eHg is clearly a subset of G.

eG 2 Ker(f) fgiven theoremg
) Ker(f) is non-empty.

Suppose a, b are two elements in Ker(f),

so f(a) = f(b) = eH .

Consider

f(a ¤ b¡1) = f(a) ± f(b¡1) ff is a homomorphismg
= eH ± (f(b))¡1 fgiven theoremg
= eH ± (eH)¡1

= eH ± eH

= eH

) a ¤ b¡1 2 Ker(f)

Since Ker(f) is a non-empty subset of G, and since

a ¤ b¡1 2 Ker(f) for all a, b 2 Ker(f), by the subgroup

test, Ker(f) < G.

) a ¤ am¡1 = am¡1 ¤ a = e

f(gi ¤ gj) = f(gi+j), i, j 2 Zm

= f(gi+j (modm)) fgm = eg
= i+ j (modm)

= f(gi) +m f(gj)
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WORKED SOLUTIONS 169

b R(f) = ff(a) j a 2 Gg is clearly a subset of H.

f(eG) = eH fgiven theoremg
) eH 2 R(f)

) R(f) is non-empty.

Suppose h1, h2 are two elements in R(f),

so h1 = f(a1)

and h2 = f(a2) for some elements a1, a2 2 G

Consider h1 ± h ¡1
2

= f(a1) ± f(a2)
¡1

= f(a1) ± f(a ¡1
2 ) fgiven theoremg

= f(a1 ¤ a ¡1
2 )

= f(a) for some element a = a1 ¤ a ¡1
2 2 G

since a1, a2 2 G and G is a group

) h1 ± h ¡1
2 2 R(f)

Since R(f) is a non-empty subset of H, and since

h1 ±h ¡1
2 2 R(f) for all h1, h2 2 R(f), by the subgroup

test, R(f) < H.

REVIEW SET D

1 a

B [ C

A \ (B [ C)

A \B

A \ C

(A \ B) [ (A \ C) is

all shaded parts

b

B \ C

A

A[(B\C) is all shaded

parts

)

A [B

A [ C

(A [B) \ (A [ C)

consists of all double

shaded regions

)

2 A = f1, 2, 3g
a P (A) = f?, f1g, f2g, f3g, f1, 2g, f2, 3g, f1, 3g,

f1, 2, 3gg
b i P (A) under \.

The identity would be A as for any S 2 P (A),

S \A = A \ S = S.
However, for example, f1g does not have an inverse

in P (A) as there is no S 2 P (A) such that

f1g \ S = A.

) P (A) does not form a group under \.

ii P (A) under [.

The identity would be ? as for any S 2 P (A),

S [? = ? [ S = S.

However, for example, f1g does not have an inverse in

P (A) as there is no S in P (A) such that f1g [ A = ?.

) P (A) does not form a group under [.

3 (a, b)R(x, y) , x2 + y2 = a2 + b2 for

(a, b), (x, y) 2 R £ R

a (x, y)R(x, y) since x2 + y2 = x2 + y2

) R is reflexive .... (1)

If (x, y)R(a, b) then x2 + y2 = a2 + b2

) a2 + b2 = x2 + y2

) (a, b)R(x, y)

) R is symmetric .... (2)

If (x, y)R(a, b) and (a, b)R(c, d)

then x2 + y2 = a2 + b2 and a2 + b2 = c2 + d2

) x2 + y2 = c2 + d2

) (x, y)R(c, d)

) R is transitive .... (3)

From (1), (2), and (3), R is an equivalence relation.

b One equivalence class is f(0, 0)g.

For each r 2 R +, there is an equivalence class

f(x, y) j x2 + y2 = r2g, r2 = a2 + b2 which is the set

of all points on a circle centre (0, 0), radius r.

f(0, 0)g and five circles

are shown.

4 (a, b)R(x, y) , y = b, (a, b), (x, y) 2 Z £ Z .

a (x, y)R(x, y) since y = y
) R is reflexive .... (1)

If (x, y)R(a, b) ) b = y

) y = b

) (a, b)R(x, y)

) R is symmetric .... (2)

If (x, y)R(a, b) and (a, b)R(c, d)

then b = y and d = b ) d = y
) (x, y)R(c, d)
) R is transitive .... (3)

From (1), (2), and (3), R is an equivalence relation.

b Each point (a, b) belong to an equivalence class consisting

of all points with integer coordinates lying in a horizontal line

passing through (a, b).

Two such classes are shown.

A B

U
C

A B

U
C

A B

U
C

A B

U
C

A B

C

A B

C

y

x

y

x

y = 2

y = -3
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170 WORKED SOLUTIONS

5 f1(x) = x, f2(x) =
1

1¡ x
, f3(x) =

x¡ 1

x
,

f4(x) =
1

x
, f5(x) = 1¡ x, f6(x) =

x

x¡ 1

(f1 ± f1)(x)

= f1(f1(x))

= f1(x)

(f1 ± f2)(x)

= f1(f2(x))

= f2(x)

(f1 ± f3)(x)

= f1(f3(x))

= f3(x)

(f1 ± f4)(x)

= f1(f4(x))

= f4(x)

(f1 ± f5)(x)

= f1(f5(x))

= f5(x)

(f1 ± f6)(x)

= f1(f6(x))

= f6(x)

(f2 ± f1)(x)

= f2(f1(x))

= f2(x)

(f2 ± f2)(x)

= f2(f2(x))

= f2

³
1

1¡ x

´
=

1

1¡ 1
1¡x

=
1¡ x

1¡ x¡ 1

=
x¡ 1

x

= f3(x)

(f2 ± f3)(x)

= f2(f3(x))

= f2

³
x¡ 1

x

´
=

1

1¡ x¡1
x

=
x

x¡ (x¡ 1)

= x

= f1(x)

(f2 ± f4)(x)

= f2(f4(x))

= f2

³
1

x

´
=

1

1¡ 1
x

=
x

x¡ 1

= f6(x)

(f2 ± f5)(x)

= f2(f5(x))

= f2(1¡ x)

=
1

1¡ (1¡ x)

=
1

x
= f4(x)

(f2 ± f6)(x)

= f2(f6(x))

= f2

³
x

x¡ 1

´
=

1

1¡ x

x¡1

=
x¡ 1

x¡ 1¡ x

=
x¡ 1

¡1
= 1¡ x

= f5(x)

(f3 ± f1)(x)

= f3(f1(x))

= f3(x)

(f3 ± f2)(x)

= f3(f2(x))

= f3

³
1

1¡ x

´
=

1
1¡x

¡ 1

1
1¡x

=
1¡ (1¡ x)

1

= x

= f1(x)

(f3 ± f3)(x)

= f3(f3(x))

= f3

³
x¡ 1

x

´
=

x¡1
x

¡ 1

x¡1
x

=
x¡ 1¡ x

x¡ 1

=
1

1¡ x

= f2(x)

(f3 ± f4)(x)

= f3(f4(x))

= f3

³
1

x

´
=

1
x
¡ 1

1
x

=
1¡ x

1
= 1¡ x

= f5(x)

(f3 ± f5)(x)

= f3(f5(x))

= f3(1¡ x)

=
1¡ x¡ 1

1¡ x

=
¡x

1¡ x

=
x

x¡ 1
= f6(x)

(f3 ± f6)(x)

= f3(f6(x))

= f3

³
x

x¡ 1

´
=

x

x¡1
¡ 1

x

x¡1

=
x¡ (x¡ 1)

x

=
1

x

= f4(x)

(f4 ± f1)(x)

= f4(f1(x))

= f4(x)

(f4 ± f2)(x)

= f4(f2(x))

= f4

³
1

1¡ x

´
=

1
1

1¡x

= 1¡ x

= f5(x)

(f4 ± f3)(x)

= f4(f3(x))

= f4

³
x¡ 1

x

´
=

x

x¡ 1
= f6(x)

(f4 ± f4)(x)

= f4(f4(x))

= f4

³
1

x

´
=

1
1
x

= x

= f1(x)

(f4 ± f5)(x)

= f4(f5(x))

= f4(1¡ x)

=
1

1¡ x

= f2(x)

(f4 ± f6)(x)

= f4(f6(x))

= f4

³
x

x¡ 1

´
=

1
x

x¡1

=
x¡ 1

x
= f3(x)

(f5 ± f1)(x)

= f5(f1(x))

= f5(x)

(f5 ± f2)(x)

= f5(f2(x))

= f5

³
1

1¡ x

´
= 1¡ 1

1¡ x

=
1¡ x¡ 1

1¡ x

=
¡x

1¡ x

=
x

x¡ 1
= f6(x)

(f5 ± f3)(x)

= f5(f3(x))

= f5

³
x¡ 1

x

´
= 1¡

³
x¡ 1

x

´
=

x¡ x+ 1

x

=
1

x

= f4(x)
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WORKED SOLUTIONS 171

(f5 ± f4)(x)

= f5(f4(x))

= f5

³
1

x

´
= 1¡ 1

x

=
x¡ 1

x

= f3(x)

(f5 ± f5)(x)

= f5(f5(x))

= f5(1¡ x)

= 1¡ (1¡ x)

= x

= f1(x)

(f5 ± f6)(x)

= f5(f6(x))

= f5

³
x

x¡ 1

´
= 1¡ x

x¡ 1

=
x¡ 1¡ x

x¡ 1

=
¡1

x¡ 1

=
1

1¡ x
= f2(x)

(f6 ± f1)(x)

= f6(f1(x))

= f6(x)

(f6 ± f2)(x)

= f6(f2(x))

= f6

³
1

1¡ x

´
=

1
1¡x

1
1¡x

¡ 1

=
1

1¡ (1¡ x)

=
1

x

= f4(x)

(f6 ± f3)(x)

= f6(f3(x))

= f6

³
x¡ 1

x

´
=

x¡1
x

x¡1
x

¡ 1

=
x¡ 1

x¡ 1¡ x
= 1¡ x

= f5(x)

(f6 ± f4)(x)

= f6(f4(x))

= f6

³
1

x

´
=

1
x

1
x
¡ 1

=
1

1¡ x
= f2(x)

(f6 ± f5)(x)

= f6(f5(x))

= f6(1¡ x)

=
1¡ x

1¡ x¡ 1

=
1¡ x

¡x

=
x¡ 1

x

= f3(x)

(f6 ± f6)(x)

= f6(f6(x))

= f6

³
x

x¡ 1

´
=

x

x¡1

x

x¡1
¡ 1

=
x

x¡ (x¡ 1)

= x

= f1(x)

Thus the Cayley table is:

± f1 f2 f3 f4 f5 f6

f1 f1 f2 f3 f4 f5 f6
f2 f2 f3 f1 f6 f4 f5
f3 f3 f1 f2 f5 f6 f4
f4 f4 f5 f6 f1 f2 f3
f5 f5 f6 f4 f3 f1 f2
f6 f6 f4 f5 f2 f3 f1

Closure: The elements of the table consist of all elements

of S.

) S is closed under ±.

Associative: ± is associative on S

fas function composition is associativeg
Identity: The identity function is f1 as

f1 ± fi = fi ± f1 = fi for i = 1, 2, 3, 4, 5, 6.

Inverse: From the table:

f ¡1
1 = f1

f ¡1
2 = f3

f ¡1
3 = f2

o
as f2 ± f3 = f3 ± f2 = f1

f ¡1
4 = f4

f ¡1
5 = f5

f ¡1
6 = f6

)
as fi ± fi = f1 for i = 4, 5, 6

) every member of S has a unique inverse in S.

Hence fS, ±g is a group.

6 a a ¤ b =
a+ b

a2

No, for example,

(1 ¤ 2) ¤ 1

= 3
1
¤ 1

= 3 ¤ 1

= 4
9

whereas 1 ¤ (2 ¤ 1) = 1 ¤ 3
4

=
13
4

1

= 7
4

So, in general, (a ¤ b) ¤ c 6= a ¤ (b ¤ c).

b a ¤ b = 2a+b

No, for example (0 ¤ 1) ¤ 2

= 21 ¤ 2

= 2 ¤ 2

= 22+2

= 24

whereas 0 ¤ (1 ¤ 2)

= 0 ¤ 23

= 0 ¤ 8

= 28

So, in general, (a ¤ b) ¤ c 6= a ¤ (b ¤ c).

c a ¤ b = a+ b¡ 3ab
(a ¤ b) ¤ c = (a+ b¡ 3ab) ¤ c

= a+ b¡ 3ab+ c¡ 3(a+ b¡ 3ab)c

= a+ b¡ 3ab+ c¡ 3ac¡ 3bc+ 9abc

= a+ b+ c¡ 3ab¡ 3ac¡ 3bc+ 9abc

and a ¤ (b ¤ c) = a ¤ (b+ c¡ 3bc)

= a+ b+ c¡ 3bc¡ 3a(b+ c¡ 3bc)

= a+ b+ c¡ 3bc¡ 3ab¡ 3ac+ 9abc

= (a ¤ b) ¤ c, for all a, b, c 2 R
So, ¤ is associative on R .

7 a p =

³
1 2 3 4 5 6
2 6 1 4 3 5

´
= (1 2 6 5 3)

) p¡1 = (3 5 6 2 1) = (1 3 5 6 2)

b p = (1 2 6 5 3) has order 5

) p5 = e

) p6 = p = (1 2 6 5 3)

8 Let S = fa, b, c, d, eg
a Consider Z 5 = f0, 1, 2, 3, 4g under +5, addition modulo 5.

The Cayley table is: +5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Closure: From the table, for all a, b 2 Z 5,

a+5 b 2 Z 5

) Z 5 is closed under +5.

Associative: Associativity follows from the associative

property of + in Z .
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172 WORKED SOLUTIONS

Identity: The identity is 0 in Z 5, as

0 +5 a = a+5 0 = a for all a 2 Z 5.

Inverse: 0¡1 = 0, 1¡1 = 4, 2¡1 = 3, 3¡1 = 2,

and 4¡1 = 1

) each element in Z 5 has a unique inverse.

) Z 5 is a group under +5.

The given table has the

same structure as Z 5

under +5

0 7! a

1 7! b

2 7! c

3 7! d

4 7! e

¤ a b c d e

a a b c d e

b b c d e a

c c d e a b

d d e a b c

e e a b c d

We have an isomorphism between fZ 5, +5g which we

know is a group, and fS, ¤g.

) fS, ¤g is a group.

b ¤ is not associative on S.
For example, (b ¤ c) ¤ d

= d ¤ d

= b

and b ¤ (c ¤ d)

= b ¤ e

= c

and b 6= c
) S is not a group on ¤.

9 a ¤ 0 1 2 3 4 5

0 0 0 0 0 0 0
1 1 2 3 4 5 0
2 4 0 2 4 0 2
3 3 0 3 0 3 0
4 4 2 0 4 2 0
5 1 0 5 4 3 2

a ¤ b = a£6 (a+ b)

b No, as for example, in row 1 all of 0, 1, 2, 3, 4, 5 are not

represented.

c No, as for example, there is no identity.

10 a

Associative: [(a, b, c) ¤ (x, y, z)] ¤ (e, f , g)

= (a+ x, b+ y, c+ z ¡ xb) ¤ (e, f , g)

= (a+ x+ e, b+ y + f ,

c+ z ¡ xb+ g ¡ e(b+ y))

= (a+ x+ e, b+ y + f ,

c+ z + g ¡ xb¡ eb¡ ey)

and

(a, b, c) ¤ [(x, y, z) ¤ (e, f , g)]

= (a, b, c) ¤ (x+ e, y + f , z + g ¡ ey)

= (a+ x+ e, b+ y + f ,

c+ z + g ¡ ey ¡ (x+ e)b)

= (a+ x+ e, b+ y + f ,

c+ z + g ¡ xb¡ ey ¡ eb)

= [(a, b, c) ¤ (x, y, z)] ¤ (e, f , g)

) ¤ is associative on G.

b (a, b, c) ¤ (x, y, z) = (a+ x, b+ y, c+ z ¡ xb)

(x, y, z) ¤ (a, b, c) = (x+ a, y + b, z + c¡ ay)

These are equal , bx = ay

, x

y
=

a

b
which is not true in general.

) fG, ¤g is not Abelian.

c a can take m values f0, 1, 2, 3, ...., m¡ 1g
b likewise has m values

c likewise has m values

) the order of G, jGj = m3.

11 As G is associative on ¤ and ¤ is closed on G it remains to be

proved that: (1) G has an identity, and

(2) every element of G has an inverse in G.

Given: x ¤ a = b and a ¤ y = b have unique solutions in G.

(1) Identity: Suppose b ¤ a = c ¤ a = d say, d 2 G.

Since x ¤ a = d has a unique solution

x = b = c

) b ¤ a = c ¤ a ) b = c
This is right cancellation.

Similarly,
a ¤ b = a ¤ c ) b = c (left cancellation).

Now suppose

a ¤ x = a

) a ¤ x ¤ a = a ¤ a fright £ by ag
) a ¤ x ¤ a = a ¤ a ¤ x fa ¤ x = ag

) x ¤ a = a ¤ x fleft cancellationg
) x ¤ a = a ¤ x = a

and x is a unique solution to y ¤ a = a.

Thus for each a 2 G, there is a unique x 2 G

such that a ¤ x = x ¤ a = a.
Now suppose for a, b 2 G

a ¤ x = x ¤ a = a and b ¤ x0 = x0 ¤ b = b
and also suppose z is the unique solution to

a ¤ z = b

Identity: (0, 0, 0) is the identity as

(a, b, c) ¤ (0, 0, 0)

= (a+ 0, b+ 0, c+ 0¡ 0(b))

= (a, b, c)

Likewise (0, 0, 0) ¤ (a, b, c) = (a, b, c).

Inverse: Suppose (a, b, c) ¤ (x, y, z) = (0, 0, 0)

) (a+ x, b+ y, c+ z ¡ xb) = (0, 0, 0)

So, a+ x (modm) = 0

) x = m¡ a fx 2 Ag
b+ y (modm) = 0

) y = m¡ b fy 2 Ag
c+ z ¡ xb (modm) = 0

) z = xb¡ c (modm)

= (m¡ a)b¡ c (modm)

) (a, b, c)¡1

= (m¡ a, m¡ b, (m¡ a)b¡ c)

Check:

(m¡ a, m¡ b, (m¡ a)b¡ c) ¤ (a, b, c)

= (m¡ a+ a, m¡ b+ b,

mb¡ ab¡ c+ c¡ a(m¡ b))

= (m, m, mb¡ ab¡ am+ ab)

= (m, m, m(b¡ a))

= (0, 0, 0)

(a, b, c) ¤ (x, y, z)

= (a+ x (modm), b+ y (modm), c+ z ¡ xb (modm))

Closure: a+x (modm) 2 A, b+y (modm) 2 A,

and c+ z ¡ xb (modm) 2 A

) (a, b, c) ¤ (x, y, z) 2 G
) G is closed under ¤.
fWe will now write

(p (modm), q (modm), r (modm)) as

(p, q, r).g

magentacyan yellow black

0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 0 05 5

2
5

2
5

7
5

7
5

5
0

5
0

9
5

9
5

1
0
0

1
0
0 IB HL OPT

Sets Relations Groups

Y:\HAESE\IB_HL_OPT-SRG\IB_HL_OPT-SRG_an\172IB_HL_OPT-SRG_an.cdr Thursday, 15 August 2013 4:32:04 PM BRIAN



WORKED SOLUTIONS 173

) (x ¤ a) ¤ z = x0 ¤ b fa = x ¤ a, b = x0 ¤ bg
) x ¤ a ¤ z = x0 ¤ b

) x ¤ b = x0 ¤ b fa ¤ z = bg
) x = x0 fright cancellationg

Thus the element x 2 G such that

a ¤ x = x ¤ a = a is the same for all a 2 G.
) G has identity x = e.

(2) Inverse: For a 2 G, let x be the unique solution to

a ¤ x = e.
) a ¤ x ¤ a = e ¤ a = a fright £ by ag

) a ¤ x ¤ a ¤ e = a ¤ e fe the identityg
) x ¤ a ¤ e = e fleft cancellationg

) x ¤ a = e fidentityg
Thus a ¤ x = x ¤ a = e, and so each element

in G has a unique inverse.

As the group axioms are satisfied, fG, ¤g is a group.

12 Let
2a+ 1

2b+ 1
and

2c+ 1

2d+ 1
be in Q n f0g.

Then
2a+ 1

2b+ 1
£
³
2c+ 1

2d+ 1

´¡1

=
2a+ 1

2b+ 1
£ 2d+ 1

2c+ 1

=
4ad+ 2a+ 2d+ 1

4bc+ 2b+ 2c+ 1

=
2(2ad+ a+ d) + 1

2(2bc+ b+ c) + 1

where 2ad+ a+ d, 2bc+ b+ c 2 Z
fas Z is closed under £ and +g

)
2a+ 1

2b+ 1
£
³
2c+ 1

2d+ 1

´¡1

is a member of

S = frationals of the form
2a+ 1

2b+ 1
g, which is a

non-empty subset of Q n f0g.

) by the subgroup test, S is a subgroup of fQ n f0g, £g.

13 a i £20 1 9 11 19

1 1 9 11 19
9 9 1 19 11
11 11 19 1 9
19 19 11 9 1

ii £20 1 3 7 9

1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

iii £20 1 9 13 17

1 1 9 13 17
9 9 1 17 13
13 13 17 9 1
17 17 13 1 9

b i S = f1, 9, 11, 19g is closed under £20 as the Cayley

table contains only elements of S.

£20 is associative on S as £ is associative on Z +.
The identity is 1 as

a£20 1 = 1£20 a = a for all a 2 S.
Each element of S has a unique inverse;

1¡1 = 1, 9¡1 = 9, 11¡1 = 11, 19¡1 = 19.

) fS, £20g is a group.

ii S = f1, 3, 7, 9g is closed under £20 as the Cayley

table contains only elements of S.

£20 is associative on S as £ is associative on Z+.
The identity is 1 as

a£20 = 1£20 a = a for all a 2 S.
Each element of S has a unique inverse;

1¡1 = 1, 3¡1 = 7, 7¡1 = 3, 9¡1 = 9.

) fS, £20g is a group.

iii S = f1, 9, 13, 17g is closed under £20 as the Cayley

table contains only elements of S.

£20 is associative on S as £ is associative on Z+.
The identity is 1 as

a£20 1 = 1£20 a = a for all a 2 S.
Each element has a unique inverse;

1¡1 = 1, 9¡1 = 9, 13¡1 = 17, 17¡1 = 13.

) fS, £20g is a group.

c The groups in ii and iii are cyclic groups of order 4 and are

therefore isometric.
The group in i is not cyclic since no element has order 4.

fThis group is isomorphic to the Klein 4-group.g
14 a i Since 0 is even, 0 2 G

) 0G = G

) 0G = f2Z , + g = feven integersg
1G = 1f2Z , + g

= f...., 1 + (¡4), 1 + (¡2), 1 + 0,

1 + 2, 1 + 4, ....g
= f...., ¡3, ¡1, 1, 3, 5, ....g
= fodd integersg

ii fZ , +g is the disjoint union of all the left cosets of

f2Z , +g. Since Z = feven integersg [ fodd integersg,

the two left cosets found in a i are all the (distinct) left

cosets of f2Z , +g in fZ , +g.

iii Only the left coset which is the subgroup itself, is a

subgroup of fZ , +g. Hence 1G cannot be a subgroup.

) the set of odd integers cannot be a subgroup of

fZ , +g.

Alternatively, the identity 0 =2 fodd integersg, so it

cannot be a subgroup.

b i 0G = G

= f...., ¡3n, ¡2n, ¡n, 0, n, 2n, 3n, .... g
= [0]

1G = f...., 1 + (¡3n), 1 + (¡2n), 1 + (¡n),

1 + 0, 1 + n, 1 + 2n, ....g
= f...., 1¡ 3n, 1¡ 2n, 1¡ n, 1, n+ 1, 2n+ 1, ....g
= [1]

Similarly,

2G = [2], 3G = [3], ...., (n¡ 1)G = [n¡ 1]
) we obtain the n residue classes modulo n.

ii The cosets found in b i are pairwise disjoint, and a careful

look shows that their union gives all the integers.

For example:

0 2 0G, 1 2 1G, ...., n¡ 1 2 (n¡ 1)G

n 2 0G, n+ 1 2 1G, ...., and so on

So, there are n distinct left cosets of G in fZ , +g.

iii The n residue classes modulo n are precisely the n left

cosets of G listed in b i.
Since the distinct left cosets of G partition the group

fZ , +g, it follows that the n residue classes modulo n

partition Z .
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